Skip to main content
Log in

Jasmonic Acid Improves Growth Performance of Soybean Under Nickel Toxicity By Regulating Nickel Uptake, Redox Balance, and Oxidative Stress Metabolism

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Soil contamination with nickel (Ni) is a persistent threat to crop production worldwide. The present study examined the putative roles of jasmonic acid (JA) in improving Ni tolerance in soybean. Our findings showed that priming of soybean seeds with JA significantly improved the growth performance of soybean when grown under excessive Ni. The enhanced Ni tolerance of soybean prompted by JA could be ascribed to its ability to regulate Ni uptake and accumulation, and to decrease Ni-induced membrane damage as evidenced by reduced levels of reactive oxygen species (ROS), malondialdehyde, lipoxygenase activity, and electrolyte leakage in Ni-stressed plants. JA also boosted redox states and antioxidant capacity in Ni-stressed plants by maintaining increased levels of ascorbate and glutathione, and enhanced activities of ROS-detoxifying enzymes compared with Ni-stressed alone plants. Additionally, methylglyoxal detoxification system was significantly upregulated in JA-primed and “JA-primed + Ni-stressed” plants, indicating an alleviating effect of JA on Ni-induced methylglyoxal toxicity. Our results conclude that JA-mediated regulation of Ni uptake and accumulation, and enhanced ROS metabolism by activating antioxidant defense and glyoxalase systems contributed to improved performance of soybean under excessive Ni, thereby suggesting JA as an effective stress regulator in mitigating Ni toxicity in economically important soybean, and perhaps in other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Agarwal DK, Billore S, Sharma A, Dupare B, Srivastava S (2013) Soybean: introduction, improvement, and utilization in India—problems and prospects. Agric Res 2:293–300

    Article  CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA (2017) Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.) Arch Agro Soil Sci 63:1–11

    Article  Google Scholar 

  • Álvarez Viveros MF, Inostroza-Blancheteau C, Timmermann T, González M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40:3281–3290. https://doi.org/10.1007/s11033-012-2403-4

    Article  CAS  Google Scholar 

  • Anjum SA, Xie X-y, Wang L-c, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413. https://doi.org/10.1007/s00709-014-0710-4

    Article  CAS  PubMed  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94

    Article  PubMed Central  Google Scholar 

  • Bajji M, Kinet J-M, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Blasco B, Ruiz JM (2014) Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. Plant Sci 227:110–121

    Article  CAS  PubMed  Google Scholar 

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Saf 104:349–356

    Article  CAS  PubMed  Google Scholar 

  • Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12

    Article  Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu J-Q, Tran L-SP (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doderer A, Kokkelink I, van der Veen S, Valk BE, Schram A, Douma AC (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta (BBA) 1120:97–104

    Article  CAS  Google Scholar 

  • Dresler S, Hanaka A, Bednarek W, Maksymiec W (2014) Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol Plant 36:1565–1575. https://doi.org/10.1007/s11738-014-1532-x

    Article  CAS  Google Scholar 

  • Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G (2003) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131:264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  CAS  PubMed  Google Scholar 

  • Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2015) Food and Agriculture Organization of the United Nations Statistics Division. FAO, Rome

    Google Scholar 

  • Farooq MA et al (2016) Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci 7:468. https://doi.org/10.3389/fpls.2016.00468

    Article  PubMed  PubMed Central  Google Scholar 

  • Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13:1047

    Article  PubMed Central  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J 80:93–105. https://doi.org/10.1111/tpj.12621

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran L-SP (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37

    Article  Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory Sudhir K, Singla-Pareek Sneh L (2014) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490. https://doi.org/10.1042/bst20130242

    Article  CAS  PubMed  Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ (2010) Effects of methyl jasmonate treatment on alleviation of cadmium damages in soybean. J Plant Nutr 33:1016–1025

    Article  CAS  Google Scholar 

  • Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285

    Article  PubMed  Google Scholar 

  • Li Z-G (2016) Methylglyoxal and glyoxalase system in plants: old players. New Concepts Bot Rev 82:183–203. https://doi.org/10.1007/s12229-016-9167-9

    Article  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011. https://doi.org/10.1089/ars.2012.5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano J (2012) Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59:90–97 https://doi.org/10.1016/j.plaphy.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M, Tran L-SP (2015a) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Rahman A, Ansary MMU, Watanabe A, Fujita M, Phan Tran L-S (2015b) Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 5:14078. https://doi.org/10.1038/srep14078

    Article  PubMed  PubMed Central  Google Scholar 

  • Mudalkar S, Sreeharsha RV, Reddy AR (2017) Involvement of glyoxalases and glutathione reductase in conferring abiotic stress tolerance to Jatropha curcas L. Environ Exp Bot 134:141–150. https://doi.org/10.1016/j.envexpbot.2016.11.011

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513

    Article  CAS  Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. seedlings under copper stress. Am J Plant Sci 4:817

    Article  Google Scholar 

  • Putter J, Becker R (1984) Peroxidase. In: BergMeyer HU (ed) Methods of enzymatic analysis, vol 3, 3rd edn. Wiley-VCH, Weinheim, pp 286–293

    Google Scholar 

  • Rajpoot R, Rani A, Srivastava RK, Pandey P, Dubey R (2016) Terminalia arjuna bark extract alleviates nickel toxicity by suppressing its uptake and modulating antioxidative defence in rice seedlings. Protoplasma 253:1449–1462

    Article  PubMed  Google Scholar 

  • Saleh L, Plieth C (2010) Total low-molecular-weight antioxidants as a summary parameter, quantified in biological samples by a chemiluminescence inhibition assay Nat Protoc 5:1627–1634. http://www.nature.com/nprot/journal/v5/n10/abs/nprot.2010.120.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 248:503–511

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Pandey S (2011) Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J Environ Biol 32:391

    CAS  PubMed  Google Scholar 

  • Sirhindi G, Mir MA, Sharma P, Gill SS, Kaur H, Mushtaq R (2015) Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress. Physiol Mol Biol Plants 21:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front Plant Sci 7:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125

    Article  CAS  Google Scholar 

  • Soltani Maivan E, Radjabian T, Abrishamchi P, Talei D (2017) Physiological and biochemical responses of Melissa officinalis L. to nickel stress and the protective role of salicylic acid. Arch Agron Soil Sci 63:330–343

    Article  CAS  Google Scholar 

  • Sreekanth T, Nagajyothi P, Lee K, Prasad T (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140

    Article  CAS  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011) Transgenic potato overproducing l-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297. https://doi.org/10.1007/s10529-011-0684-7

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development—applied aspects. Biotechnol Adv 32:31–39

    Article  CAS  PubMed  Google Scholar 

  • Wild R, Ooi L, Srikanth V, Münch G (2012) A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-l-cysteine assay. Anal Bioanal Chem 403:2577–2581

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59:373–381

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86:1–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding the Research Group No. RG-1438-039. M.A.M appreciates the DST-SERB for the national postdoc fellowship (File No: PDF/2016/002720).

Author information

Authors and Affiliations

Authors

Contributions

MAM, GS, PA conceived and designed the experiments and MAM carried out the experimental work. MAM, MNA and PA analyzed the data and results. MAM, PA wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, M.A., Sirhindi, G., Alyemeni, M.N. et al. Jasmonic Acid Improves Growth Performance of Soybean Under Nickel Toxicity By Regulating Nickel Uptake, Redox Balance, and Oxidative Stress Metabolism. J Plant Growth Regul 37, 1195–1209 (2018). https://doi.org/10.1007/s00344-018-9814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9814-y

Keywords

Navigation