Skip to main content

Advertisement

Log in

Occurrence, physiological responses and toxicity of nickel in plants

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The focus of the review is on the specific aspects of nickel’s effects on growth, morphology, photosynthesis, mineral nutrition and enzyme activity of plants. The mobility of nickel in the environment and the consequent contamination in soil and water is of great concern. Also, the detrimental effects of excessive nickel on plant growth have been well known for many years. Toxic effects of nickel on plants include alterations in the germination process as well as in the growth of roots, stems and leaves. Total dry matter production and yield was significantly affected by nickel and also causes deleterious effects on plant physiological processes, such as photosynthesis, water relations and mineral nutrition. Nickel strongly influences metabolic reactions in plants and has the ability to generate reactive oxygen species which may cause oxidative stress. More recent evidence indicates that nickel is required in small amounts for normal plant growth and development. Hence, with the increasing level of nickel pollution in the environment, it is essential to understand the functional roles and toxic effects of nickel in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad MSA, Hussain M, Saddiq R, Alvi AK (2007) Mungbean: a nickel indicator, accumulator or excluder? Bull Environ Contam Toxicol 78:319–324

    Article  CAS  Google Scholar 

  • Amosova NV, Tazina IA, Synzynys BI (2003) Effect of phytotoxicity and genotoxicity of iron, cobalt, and nickel ions on physiological parameters in plants of different species. S-kh Biol 5:49–54

    Google Scholar 

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375

    Article  CAS  Google Scholar 

  • Ayvaz Z (1992) Çevre Kirliliˇgi ve Kontrolü. Paper presented at the meeting of E.Ü.1. Uluslararas çevre koruma sempozyumu, Izmir

  • Baccouch S, Chaoui A, Ferjani EE (2001) Nickel toxicity induces oxidative damage in Zea mays roots. J Plant Nutr 24:1085–1097

    Article  CAS  Google Scholar 

  • Bal W, Kasprzak KS (2002) Induction of oxidative DNA damage by carcinogenic metals. Toxicol Lett 127:55–62

    Article  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Barrie LA (1981) Atmospheric nickel in Canada. In: Effects of nickel in the Canadian environment. National Research Council of Canada No. 18568. 3, Ottawa, pp 55–76

  • Barsukova VS, Gamzikova OI (1999) Effects of nickel surplus on the element content in wheat varieties contrasting in Ni resistance. Agrokhimiya 1:80–85

    Google Scholar 

  • Bishnoi NR, Sheoran IS, Singh R (1993) Influence of cadmium and nickel on photosynthesis and water relations in wheat leaves of different insertion level. Photosynthetica 28:473–479

    CAS  Google Scholar 

  • Boisvert S (2007) Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20:879–889

    Article  CAS  Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  Google Scholar 

  • Carlson RW, Bazzaz FA, Rolfe GL (1975) The effect of heavy metals on plants: II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni and Ti. Environ Res 10:113–120

    Article  CAS  Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Polish J Environ Stud 15:375–382

    CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304–313

    CAS  Google Scholar 

  • Crooke WM (1958) Effect of heavy metal toxicity on the cation exchange capacity of plant roots. Soil Sci 86:231–241

    Article  CAS  Google Scholar 

  • Das PK, Kar M, Mishra D (1978) Nickel nutrition of plants: effect of nickel on some oxidase activities during rice (Oryza sativa L.) seed germination. Z Pflanzenphysiol 90:225–233

    CAS  Google Scholar 

  • De kock PC (1956) Heavy metal toxicity and iron chlorosis. Ann Bot 20:133–141

    CAS  Google Scholar 

  • Del Carmen EM, Souza V, Bucio L, Hernández E, Damián-Matsumura P, Zaga V, Gutiérrez-Ruiz MC (2002) Cadmium induces alpha(1) collagen (I) and metallothionein II gene and alters the antioxidant system in rat hepatic stellate cells. Toxicology 170:63–73

    Article  CAS  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56

    Article  CAS  Google Scholar 

  • Dietz KJ, Baier M, Kramer U (1999) Ecophysiology of plant growth under heavy metals. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97

  • Dimkpa C, Svatos A, Merten D, Buchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  Google Scholar 

  • Duke JM (1980) Production and uses of nickel. In: Nriagu JO (ed) Nickel in the environment. Wiley, New York, pp 51–65

    Google Scholar 

  • Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. Biological science report USGS/BRD/BSR-1998-0001, Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, MD 20708

  • El-Shintinawy F, El-Ansary A (2000) Differential effect of Cd2+ and Ni2+ on amino acid metabolism in soybean seedlings. Biol Plant 43:79–84

    Article  CAS  Google Scholar 

  • Emsley J (1991) The elements. Clarendon, Oxford

    Google Scholar 

  • Ewais EA (1997) Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biol Plant 39:403–410

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Freeman JL (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  Google Scholar 

  • Gabbrielli R, Pandolfini T (1984) Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species. Physiol Plant 62:540–544

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2005) Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress. Acta Physiol Plant 27:329–339

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Genrich I, Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    Google Scholar 

  • Gomes-Juniora RA (2006) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  Google Scholar 

  • Gon_alves SC (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686

    Article  Google Scholar 

  • Gonnelli C, Galardi F, Gabrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plantarum 113:507–514

    Article  CAS  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (1976) IARC monographs on the evaluation of the carcinogenic risk of chemicals to man: cadmium, nickel, some epoxides, miscellaneous industrial chemicals and general considerations on volatile anaesthetics, vol 11. World Health Organization, IARC, Lyon, France, 306 pp

  • Ivanov VB (1994) Root growth responses to chemicals. Sov Sci Rev Ser D 1:70–78

    Google Scholar 

  • Ivanov VB, Bystrova EI, Seregin IV (2003) Comparative impacts of heavy metals on root growth as related to their specificity and selectivity. Fiziol Rast 50:445–454

    Google Scholar 

  • Izosimova A (2005) Modeling the interaction between calcium and nickel in the soil-plant system. Landbauforschung Völkenrode FAL Agricultural Research. Special Issue 288, ISBN 3-86576-011-2, 100

  • Karataglis SS, McNeilly T, Bradshaw AD (1986) Lead and zink tolerance of Agrostis capillaris L. and Festuca rubra L. across a mine pasture boundary at Minera, North Wales. Phyton 26:65–72

    CAS  Google Scholar 

  • Kasprzak KS (1987) Nickel. Adv Mod Environ Toxicol 11:145–183

    CAS  Google Scholar 

  • Kasprzak KS, Sunderman Jr FW, Salnikow K (2003) Nickel carcinogenesis. Mutation Res 533:67–97

    Article  CAS  Google Scholar 

  • Kevresan S, Petrovi N, Popovi M, Kandrac J (1998) Effect of heavy metals on nitrate and protein metabolism in sugar beet. Biol Plant 41:235–240

    Article  CAS  Google Scholar 

  • Khalid BY, Tinsley J (1980) Some effects of nickel toxicity on rye grass. Plant Soil 55:139–144

    Article  CAS  Google Scholar 

  • Knasmüller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, God R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutation Research 420:37–48

    Google Scholar 

  • Kochian LV (1991) Mechanisms of micronutrient uptake and translocation in plants. In: Mortvedt JJ (ed) Micronutrients in agriculture. Soil Science Society of America, Madison, WI, pp 251–270

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus—direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190

    CAS  Google Scholar 

  • Krupa Z, Siedlecka A, Maksymiec W, Baszynski T (1993) In vitro responses of photosynthetic apparatus of Phaseolus vulgaris L. to nickel toxicity. Plant Physiol 142:664–668

    Article  CAS  Google Scholar 

  • Kukkola E, Rautio P, Huttunen S (2000) Stress indications in copperand nickel-exposed Scots pine seedlings. Environ Exp Bot 43:197–210

    Article  CAS  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • L’Huillier L, d’Auzac J, Durand M, Michaud-Ferriere N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, ni concentration and localization. Can J Bot 74:1547–1554

    Article  Google Scholar 

  • Liu D, Jiang W, Wang W, Zhai L (1995) Evaluation of metal ion toxicity on root tip cells by the allium test. Israel J Plant Sci 43:125–133

    Article  CAS  Google Scholar 

  • Madhava Rao KV, Sresty TV (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  CAS  Google Scholar 

  • Mohanty N, Vaas I, Demeter S (1989) Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol Plant 76:386–390

    CAS  Google Scholar 

  • Molas J (1997) Changes in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica 34:513–522

    Article  CAS  Google Scholar 

  • Muhammad Sajid AA, Muhammad A (2012) Essential roles and hazardous effects of nickel in plants. Rev Environ Cont Toxicol 214:125–167

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • National Academy of Sciences (NAS) (1975) Nickel. Medical and biological effects of environmental pollutants. National Research Council, National Academy of Sciences, Washington

    Google Scholar 

  • Neiboer E, Richardson DHS (1980) The replacement of the non-descriptive term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollut 1:3–26

    Article  Google Scholar 

  • Nieboer E, Nriagu JO (eds) (1992) Nickel and human health: current perspectives. Wiley, New York

    Google Scholar 

  • Nieminen TM (2004) Effects of soil copper and nickel on survival and growth of Scots pine. J Environ Monit 6:888–896

    Article  CAS  Google Scholar 

  • Nriagu JO (1980) Global cycle and properties of nickel. In: Nriagu JO (ed) Nickel in the environment. Wiley, New York, pp 1–26

    Google Scholar 

  • Oller AR, Costa M, Oberdorster G (1997) Carcinogenicity assessment of selected nickel compounds. Toxcol Appl Pharmacol 143:152–166

    Article  CAS  Google Scholar 

  • Ouzounidou G, Moustakas M, Symeonidis L, Karataglis S (2006) Response of wheat seedlings to Ni stress: effects of supplemental calcium. Arch Environ Contam Toxicol 50:346–352

    Article  CAS  Google Scholar 

  • Pallavi S, Ram Shankar D (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–725

    Article  CAS  Google Scholar 

  • Papadopoulos A (2007) Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece. Environ Manag 40:719–726

    Article  CAS  Google Scholar 

  • Papazoglou EG, Karantounias GA, Vemmos SN, Bouranis DL (2005) Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environ Int 31:243–249

    Article  CAS  Google Scholar 

  • Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98:113–119

    Article  CAS  Google Scholar 

  • Piccini DF, Malavolta E (1992) Effect of nickel on two common bean cultivars. J Plant Nutr 15:2343–2350

    Article  CAS  Google Scholar 

  • Robertson AI, Meakin MER (1980) The effect of nickel on cell division and growth of Brachystegia spiciformis seedlings. J Bot Zimb 12:115–125

    Google Scholar 

  • Ros R, Cooke DT, Burden RS, James CS (1990) Effects of the herbicide MCPA, and the heavy metals, cadmium and nickel on the lipid composition, Mg2+-ATPase activity and fluidity of plasma membranes from rice, Oryza sativa (cv. Bahia) shoots. J Exp Bot 41:457–462

    Article  CAS  Google Scholar 

  • Ros R, Morales A, Segura J, Picazo I (1992) In vivo and in vitro effects of nickel and cadmium on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6

    Article  CAS  Google Scholar 

  • Rubio MI, Escrig I, Martinez-Cortina C, Lopez-Benet FJ, Sanz A (1994) Cadmium and nickel accumulation in rice plants. effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul 14:151–157

    Article  CAS  Google Scholar 

  • Samantaray S, Rout GR, Das P (1997) Tolerance of rice to nickel in nutrient solution. Biol Plant 40:295–298

    Article  CAS  Google Scholar 

  • Schickler H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of genus, Alyssum. Physiol Plant 105:39–44

    Article  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (1997) Is the endodermal barrier the only factor preventing the inhibition of root branching by heavy metal salts? Fiziol Rast (Moscow) 44:922–925

    Google Scholar 

  • Seregin IV, Ivanov VB (1998) The transport of cadmium and lead ions through root tissues. Fiziol Rast 45:899–905

    Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological Aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2005) Distribution of cadmium, lead, nickel, and strontium in imbibing maize caryopses. Russ J Plant Physiol 52:565–569

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006a) Physiological role of nickel and its toxic effects on higher plants. Fiziol Rast 53:285–308

    Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006b) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB (2003) Nickel toxicity and distribution in maize roots. Fiziol Rast 50:793–800

    Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res 23:345–351

    Article  CAS  Google Scholar 

  • Solymosi K (2004) Depending on concentration, Hg2+ reacts with different components of the NADPH: protochlorophyllide oxidoreductase macrodomains. Plant Biol 6:358–363

    Article  CAS  Google Scholar 

  • Souza JF, Rauser WE (2003) Maize and radish sequester excess cadmium and zinc in different ways. Plant Sci 65:1009–1022

    Article  Google Scholar 

  • Sresty TVS, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeon pea. Environ Exp Bot 41:3–13

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2001) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 20:77–88

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology, 3rd edn. Sinauer Associates, Sunderland, pp 607–611

    Google Scholar 

  • Van Assche F, Glijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Veeranjaneyulu K, Das VSR (1982) Intrachloroplast localization of 65Zn and 63Ni in a Zn-tolerant plant, Ocimum basilicum benth. J Exp Bot 33:1161–1165

    Article  Google Scholar 

  • Wang W (1987) Root elongation method for toxicity testing of organic and inorganic pollutants. Environ Toxicol Chem 6:409–414

    Article  CAS  Google Scholar 

  • Wong MH, Bradshaw AD (1982) A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perrene. New Phytol 91:255–261

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1991) Nickel: environmental health criteria, vol 108. World Health Organization, Geneva

    Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86:1–17

    Article  CAS  Google Scholar 

  • Zhao J, Shi G, Yuan Q (2008) Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) Backer leaves. Biometals 21:665–674

    Article  CAS  Google Scholar 

  • Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Gary, Research Scientist, Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA for his valuable suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. V. K. V. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreekanth, T.V.M., Nagajyothi, P.C., Lee, K.D. et al. Occurrence, physiological responses and toxicity of nickel in plants. Int. J. Environ. Sci. Technol. 10, 1129–1140 (2013). https://doi.org/10.1007/s13762-013-0245-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0245-9

Keywords

Navigation