Skip to main content
Log in

Effect of exogenous taurine on growth, oxidative defense, and nickel (Ni) uptake in canola (Brassica napus L.) under Ni stress

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Nickel (Ni) contamination and its associated hazardous effects on human health and plant growth are ironclad. However, the potential remedial effects of taurine (TAU) on Ni-induced stress in plants remain obscure. Therefore, the present study was undertaken to examine the effect of TAU seed priming (100 and 150 mg L‒1) as an alleviative strategy to circumvent the phytotoxic effects of Ni (150 mg kg‒1) on two canola cultivars (Ni-tolerant cv. Shiralee and Ni-sensitive cv. Dunkeld). Our results manifested an apparent decline in growth, biomass, photosynthetic pigments, leaf relative water content, DPPH free radical scavenging activity, total soluble proteins, nitrate reductase activity, and nutrient acquisition (N, P, K, Ca) under Ni toxicity. Further, Ni toxicity led to a substantial increase in oxidative stress reflected as higher levels of superoxide radicals (O2•‒) and hydrogen peroxide (H2O2) alongside increased relative membrane permeability, lipoxygenase (LOX) activity, and Ni accumulation in leaves and roots. However, TAU protected canola plants from Ni-induced oxidative damage through the amplification of hydrogen sulfide (H2S) production that intensified the antioxidant system to avert O2•‒, H2O2, and malondialdehyde (MDA) production. Further, TAU-mediated increase in H2S levels maintained membrane integrity that might have improved ionomics and bettered plant growth under Ni toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  • Abd_Allah EF, Hashem A, Alam P, Ahmad P (2019) Silicon alleviates nickel-induced oxidative stress by regulating antioxidant defense and glyoxalase systems in mustard plants. J Plant Growth Regul 38(4):1260–1273. https://doi.org/10.1007/s00344-019-09931-y

  • Ali M, Ashraf M, Athar H (2009) Influence of nickel stress on growth and some important physiological/biochemical attributes in some diverse canola (Brassica napus L.) cultivars. J Hazard Mater 172(2–3):964–969

    Article  CAS  PubMed  Google Scholar 

  • Allen S, Grimshaw H, Parkinson J, Quarmby C, Roberts J (1986) In: Moore PD, Chapman SB (eds) Methods in plant ecology. Blackwell Oxford

  • Altaf MA, Shahid R, Ren M-X, Altaf MM, Jahan MS, Khan LU (2021) Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J Plant Nutr Soil Sci 21(3):1842–1855. https://doi.org/10.1007/s42729-021-00484-2

    Article  CAS  Google Scholar 

  • Amjad M, Raza H, Murtaza B, Abbas G, Imran M, Shahid M, Naeem MA, Zakir A, Iqbal MM (2020) Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids. Plants 9(1):5

    Article  CAS  Google Scholar 

  • Ashfaque F, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160.

    Article  CAS  Google Scholar 

  • Ashraf MA, Rasheed R, Hussain I, Hafeez A, Adrees M, Rehman MZu, Rizwan M, Ali S (2022a) Effect of different seed priming agents on chromium accumulation, oxidative defense, glyoxalase system and mineral nutrition in canola (Brassica napus L.) cultivars. Environ Pollut 309:119769. https://doi.org/10.1016/j.envpol.2022.119769

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Rasheed R, Hussain I, Iqbal M, Farooq MU, Saleem MH, Ali S (2022b) Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum L. plants. Environ Sci Pollut Res 29(30):45527–45548

    Article  CAS  Google Scholar 

  • Ashraf MA, Riaz M, Arif MS, Rasheed R, Iqbal M, Hussain I, Mubarik MS (2019) The role of non-enzymatic antioxidants in improving abiotic stress tolerance in plants. In: Plant tolerance to environmental stress. CRC Press, pp 129–144

  • Askari SH, Ashraf MA, Ali S, Rizwan M, Rasheed R (2021) Menadione sodium bisulfite alleviated chromium effects on wheat by regulating oxidative defense, chromium speciation, and ion homeostasis. Environ Sci Pollut Res 28(27):36205–36225. https://doi.org/10.1007/s11356-021-13221-0

    Article  CAS  Google Scholar 

  • Barrs H, Weatherley P (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly A (1955) [136] Assay of catalases and peroxidases.

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants recent advances and future prospects. Clean–soil, Air, Water 37(4–5):304–313

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C (2019) Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. Ecotoxicol Environ Saf 169:134–143

    Article  CAS  PubMed  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42(1):35–56

    Article  CAS  PubMed  Google Scholar 

  • Doderer A, Kokkelink I, van der Veen S, Valk BE, Schram A, Douma AC (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol. 1120(1): 97–104

  • Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Fotopoulos V, Christou A, Antoniou C, Manganaris GA (2015) Review article hydrogen sulphide: a versatile tool for the regulation of growth and defence responses in horticultural crops. J Hortic Sci Biotechnol 90(3):227–234. https://doi.org/10.1080/14620316.2015.11513176

    Article  CAS  Google Scholar 

  • Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public 17(3):679

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence Higher Plants Plant Physiol 59(2):309–314

    CAS  PubMed  Google Scholar 

  • Gordner F, Pearce R, Mitchell R (1985) Physiology of crop plants. Iowa state university press, Ames USA. Ames 1985. pp 327

  • Goyal V, Jhanghel D, Mehrotra S (2021) Emerging warriors against salinity in plants: nitric oxide and hydrogen sulphide. Physiol Plant 171(4):896–908. https://doi.org/10.1111/ppl.13380

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Liu H, Wu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2019) Nickel carcinogenesis mechanism: DNA damage. Int J Mol Sci 20(19):4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafeez A, Rasheed R, Ashraf MA, Rizwan M, Ali S (2022) Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress. Chemosphere 308:136523. https://doi.org/10.1016/j.chemosphere.2022.136523

    Article  CAS  PubMed  Google Scholar 

  • Hamilton PB, Van Slyke DD, Lemish S (1943) The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. J Biol Chem 150:231–250

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5(4):353–365

    Article  Google Scholar 

  • Hasanuzzaman M, Alam M, Nahar K, Mohsin SM, Bhuyan M, Parvin K, Hawrylak-Nowak B, Fujita M (2019a) Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. Ecotoxicology 28(3):261–276

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019b) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Ali A, Khan MAU, Khan TA (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res 26(13):12673–12688. https://doi.org/10.1007/s11356-019-04892-x

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Heidari J, Amooaghaie R, Kiani S (2020) Impact of chitosan on nickel bioavailability in soil, the accumulation and tolerance of nickel in Calendula tripterocarpa. Int J Phytoremed 22(11):1175–1184. https://doi.org/10.1080/15226514.2020.1748564

    Article  CAS  Google Scholar 

  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson M (1969) Soil chemical analysis-advanced course. Soil chemical analysis-advanced course, U. of Wisconsin Press, Madison

  • Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R (2020) Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf 197:110593. https://doi.org/10.1016/j.ecoenv.2020.110593

    Article  CAS  PubMed  Google Scholar 

  • Jensen A (1978) Chlorophylls and carotenoids. Handbook of phycological methods, physiological and biochemical methods Cambridge University Press, Cambridge, pp 59–70

  • Jogawat A (2019) Osmolytes and their role in abiotic stress tolerance in plants. Mol Plant Abiotic Stress: Biol Biotechnol, pp 91–104

  • Joyia FA, Ashraf MY, Shafiq F, Anwar S, Khaliq B, Malik A (2021) Phytotoxic effects of varying concentrations of leather tannery effluents on cotton and brinjal. Agric Water Manag 246:106707

    Article  Google Scholar 

  • Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33(2):213–217

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sönmez O, Tuna AL, Aydemir S (2015) Exogenously applied nitric oxide confers tolerance to salinity-induced oxidative stress in two maize (Zea mays L.) cultivars differing in salinity tolerance. Turk J Agric for 39:909–919

    Article  CAS  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic 126(3):402–407. https://doi.org/10.1016/j.scienta.2010.07.037

    Article  CAS  Google Scholar 

  • Kerchev PI, Van Breusegem F (2022) Improving oxidative stress resilience in plants. Plant J 109(2):359–372. https://doi.org/10.1111/tpj.15493

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36(7):1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Kohli SK, Bali S, Tejpal R, Bhalla V, Verma V, Bhardwaj R, Alqarawi AA, Abd_Allah EF, Ahmad P (2019) In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-epibrassinolide and salicylic acid. Sci Rep 9(1):3524. https://doi.org/10.1038/s41598-019-39712-2

  • Kotapati KV, Palaka BK, Ampasala DR (2017) Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J 5(3):240–250. https://doi.org/10.1016/j.cj.2016.09.002

    Article  Google Scholar 

  • Lavres J, Castro Franco G, de Sousa Câmara GM (2016) Soybean seed treatment with nickel improves biological nitrogen fixation and urease activity. Front Environ Sci. https://doi.org/10.3389/fenvs.2016.00037

    Article  Google Scholar 

  • Li J, Shi C, Wang X, Liu C, Ding X, Ma P, Wang X, Jia H (2020) Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to copper oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiol Biochem 156:257–266

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in enzymology, vol 148. Elsevier, pp 350–382

  • Loomis WE, Shull CA (1937) Methods in plant physiology. Methods in plant physiology

  • Mir MA, Sirhindi G, Alyemeni MN, Alam P, Ahmad P (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. J Plant Growth Regul 37(4):1195–1209. https://doi.org/10.1007/s00344-018-9814-y

    Article  CAS  Google Scholar 

  • Mishra P, Dubey RS (2011) Nickel and Al-excess inhibit nitrate reductase but upregulate activities of aminating glutamate dehydrogenase and aminotransferases in growing rice seedlings. Plant Growth Regul 64(3):251–261. https://doi.org/10.1007/s10725-011-9566-1

    Article  CAS  Google Scholar 

  • Mita S, Murano N, Akaike M, Nakamura K (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J 11(4):841–851

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SM (2022) Silicon and nano-silicon mediated heavy metal stress tolerance in plants. In: Silicon and nano-silicon in environmental stress management and crop quality improvement. Elsevier, pp 181–191

  • Mukherjee S, Choudhuri M (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nashef AS, Osuga DT, Feeney RE (1977) Determination of hydrogen sulfide with 5,5′-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide, and parachloromercuribenzoate. Anal Biochem 79(1):394–405. https://doi.org/10.1016/0003-2697(77)90413-4

    Article  CAS  PubMed  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380

    Article  CAS  Google Scholar 

  • Qureshi FF, Ashraf MA, Rasheed R, Ali S, Hussain I, Ahmed A, Iqbal M (2020) Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). Sci Total Environ 716:137061

    Article  CAS  PubMed  Google Scholar 

  • Rahman MS, Biswas PK, Al Hasan SM, Rahman MM, Lee SH, Kim K-H, Rahman SM, Islam MR (2018) The occurrences of heavy metals in farmland soils and their propagation into paddy plants. Environ Monit Assess 190(4):201. https://doi.org/10.1007/s10661-018-6577-7

    Article  CAS  PubMed  Google Scholar 

  • Rasheed R, Ashraf MA, Ahmad SJN, Parveen N, Hussain I, Bashir R (2022) Taurine regulates ROS metabolism, osmotic adjustment, and nutrient uptake to lessen the effects of alkaline stress on Trifolium alexandrinum L. plants. S Afr J Bot 148:482–498

    Article  CAS  Google Scholar 

  • Ribarova F, Atanassova M, Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and flavonoids in Bulgarian fruits and vegetables. JU Chem Metal 40:255–260

    Google Scholar 

  • Rizwan M, Ali S, Zaheer Akbar M, Shakoor MB, Mahmood A, Ishaque W, Hussain A (2017) Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Environ Sci Pollut Res 24(27):21938–21947

    Article  CAS  Google Scholar 

  • Rizwan M, Mostofa MG, Ahmad MZ, Zhou Y, Adeel M, Mehmood S, Ahmad MA, Javed R, Imtiaz M, Aziz O, Ikram M, Tu S, Liu Y (2019) Hydrogen sulfide enhances rice tolerance to nickel through the prevention of chloroplast damage and the improvement of nitrogen metabolism under excessive nickel. Plant Physiol Biochem 138:100–111. https://doi.org/10.1016/j.plaphy.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  • Sadeghipour O (2021) Chitosan application improves nickel toxicity tolerance in soybean. J Plant Nutr Soil Sci 21(3):2096–2104. https://doi.org/10.1007/s42729-021-00505-0

    Article  CAS  Google Scholar 

  • Sall ML, Diaw AKD, Gningue-Sall D, Efremova Aaron S, Aaron J-J (2020) Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res 27(24):29927–29942. https://doi.org/10.1007/s11356-020-09354-3

    Article  CAS  Google Scholar 

  • Sarker U, Oba S (2018a) Drought stress effects on growth, ros markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in amaranthus tricolor. Appl Biochem Biotechnol 186(4):999–1016. https://doi.org/10.1007/s12010-018-2784-5

    Article  CAS  PubMed  Google Scholar 

  • Sarker U, Oba S (2018b) Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem 252:72–83

    Article  CAS  PubMed  Google Scholar 

  • Shad MI, Ashraf MA, Rasheed R, Hussain I, Ali S (2022) Exogenous coumarin decreases phytotoxic effects of manganese by regulating ascorbate-glutathione cycle and glyoxalase system to improve photosynthesis and nutrient acquisition in sesame (Sesamum indicum L.). J Plant Nutr Soil Sci 23(1):251–274

    Article  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018) Nickel; whether toxic or essential for plants and environment-a review. Plant Physiol Biochem 132:641–651

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162(8):854–864

    Article  CAS  PubMed  Google Scholar 

  • Soliman M, Alhaithloul HA, Hakeem KR, Alharbi BM, El-Esawi M, Elkelish A (2019) Exogenous nitric oxide mitigates nickel-induced oxidative damage in eggplant by upregulating antioxidants, osmolyte metabolism, and glyoxalase systems. Plants 8(12):562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasinos S, Nasopoulou C, Tsikrika C, Zabetakis I (2014) The bioaccumulation and physiological effects of heavy metals in carrots, onions, and potatoes and dietary implications for cr and ni: a review. J Food Sci 79(5):R765–R780. https://doi.org/10.1111/1750-3841.12433

    Article  CAS  PubMed  Google Scholar 

  • Surai PF, Earle-Payne K, Kidd MT (2021) Taurine as a natural antioxidant: from direct antioxidant effects to protective action in various toxicological models. Antioxidants 10(12):1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uruç Parlak K (2016) Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS-Wagening J Life Sci 76(1):1–5. https://doi.org/10.1016/j.njas.2012.07.001

    Article  Google Scholar 

  • Valivand M, Amooaghaie R (2021) Sodium hydrosulfide modulates membrane integrity, cation homeostasis, and accumulation of phenolics and osmolytes in zucchini under nickel stress. J Plant Growth Regul 40:313–328. https://doi.org/10.1007/s00344-020-10101-8

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72(5):1354–1362. https://doi.org/10.1016/j.ecoenv.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Rhodes D, Joly RJ (1996) Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Funct Plant Biol 23(4):437–443

    Article  CAS  Google Scholar 

  • Yang H, Shi G, Qiao X, Tian X (2011) Exogenous spermidine and spermine enhance cadmium tolerance of Potamogeton malaianus. Russ J Plant Physiol 58(4):622–628

    Article  CAS  Google Scholar 

  • Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Zaid A, Mohammad F, Wani SH, Siddique KM (2019) Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol Environ Saf 180:575–587

    Article  CAS  PubMed  Google Scholar 

  • Zdrojewicz Z, Popowicz E, Winiarski J (2016) Nickel -role in human organism and toxic effects. Pol Merkur Lekarski 41(242):115–118

    PubMed  Google Scholar 

  • Zhang S, Bao Q, Huang Y, Han N (2022) Exogenous plant hormones alleviate As stress by regulating antioxidant defense system in Oryza sativa L. Environ Sci Pollut Res 30(3):6454–6465

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledged the Government College University Faisalabad for providing the facilities to conduct this research.

Funding

This research work has been financially supported by Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

MAA: Conceptualization, Project administration, Supervision, Methodology, Writing—original draft. AH: Conceptualization, Writing—review & editing. RR: Conceptualization, Writing—original draft, Writing—review & Editing. IH: Writing—original draft, Writing—review & Editing. UF: Methodology, Writing—review & editing. MR: Conceptualization, Supervision, Writing—original draft. SA: Project administration, Methodology, Writing—review & editing.

Corresponding authors

Correspondence to Muhammad Rizwan or Shafaqat Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have given consent to the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12298_2023_1359_MOESM1_ESM.tif

Supplementary file1 (TIF 431 KB) Effect of taurine on total soluble sugars (TSS), reducing sugars (RS), non-reducing sugars (NRS), total free amino acids (TFAA), proline, anthocyanins, phenolics, and flavonoids in two canola cultivars under nickel toxicity. The bars display mean ± standard error (SE) values (n=4). The data were analyzed by three-way analysis of variance (ANOVA), followed by a Fisher’s least significant difference (LSD) test to compare means. Different letters assigned to the bars indicate statistically significant differences between them at P ≤ 0.05.

12298_2023_1359_MOESM2_ESM.tif

Supplementary file2 (TIF 445 KB) Effect of taurine on potassium (K), calcium (Ca), phosphorus (P), and nitrogen (N) content of leaves and roots of two canola cultivars under nickel toxicity. The bars display mean ± standard error (SE) values (n=4). The data were analyzed by three-way analysis of variance (ANOVA), followed by a Fisher’s least significant difference (LSD) test to compare means. Different letters assigned to the bars indicate statistically significant differences between them at P ≤ 0.05.

Supplementary file3 (TIF 20656 KB)

Supplementary file4 (DOCX 112 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Hafeez, A., Rasheed, R. et al. Effect of exogenous taurine on growth, oxidative defense, and nickel (Ni) uptake in canola (Brassica napus L.) under Ni stress. Physiol Mol Biol Plants 29, 1135–1152 (2023). https://doi.org/10.1007/s12298-023-01359-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01359-9

Keywords

Navigation