Skip to main content
Log in

Exogenous Diethyl Aminoethyl Hexanoate, a Plant Growth Regulator, Highly Improved the Salinity Tolerance of Important Medicinal Plant Cassia obtusifolia L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The purpose of the present study was to investigate the mechanism of DA-6 in alleviating the salinity inhibition of Cassia obtusifolia L. seeds and seedlings. NaCl (100 mM) was used to mimic salinity stress in a series of experiments. Varying combinations of DA-6 were added to seeds and seedlings under salinity stress. Seed germination indices and seedling parameters were investigated. Seed germination and seedling growth were significantly inhibited under salinity stress. NaCl-induced inhibitory effects on seed germination and seedling growth were ameliorated by DA-6 with different concentrations. Addition of DA-6 to seeds (50 µM) and seedlings (100 µM) significantly alleviated damage to the plant cells under salinity stress. DA-6 (regardless of the presence or absence of NaCl) enhanced chlorophyll concentration, total soluble sugars, free proline, and soluble protein, and improved photosystem II (PSII) photochemical efficiency levels (F v/F m), PSII actual photochemical efficiency (ΦPSII), and the photochemical quench coefficient. In contrast, the initial fluorescence (F o) and the non-photochemical quenching coefficient decreased. Application of DA-6 also enhanced the activities of superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), and glutathione reductase (GR; EC 1.6.4.2), thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid-reactive substances, hydrogen peroxide concentration (H2O2), relative conductivity, and lipoxygenase activity (LOX; EC 1.13.11.12). Based on the experimental results, we conclude that DA-6 induces advantageous effects on the attenuation of salt-stress inhibition of C. obtusifolia seeds and seedlings and alleviates oxidative damage by conferring beneficial cytoprotection and activating antioxidant enzymes. DA-6 can be used as an effective plant growth regulator to alleviate salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–41

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Anu SJ, Rao JM (2001) Oxanthrone esters from the aerial parts of Cassia kleinii. Phytochemistry 57:583–585

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Aubert S, Hennion F, Bouchereau A, Gout E, Bligny R, Dorne AJ (1999) Subcellular compartmentation of proline in the leaves of the subantarctic Kerguelen cabbage Pringlea antiscorbutica R. Br. In vivo 13C-NMR study. Plant Cell Environ 22:255–259

    Article  CAS  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Raipid determination of free proline for water studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bernstein N, Shoresh M, Xu Y, Huang B (2010) Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biol Med 49:1161–1171

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Cheeseman JM (1993) The effects of external NaCI on thylakoid stacking in lettuce plants. Plant Cell Environ 16:215–222

    Article  CAS  Google Scholar 

  • Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 105:4495–4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XL, Zhang JJ, Chen R, Li QL, Yang YS, Wu H (2013) An uncommon plant growth regulator, diethyl aminoethyl hexanoate, is highly effective in tissue cultures of the important medicinal plant purple coneflower (Echinacea purpurea L.). Biomed Res Int. doi:10.1155/2013/540316

    Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plantarum 98:253–264

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next. Funct Plant Biol 22:875–884

    Google Scholar 

  • Flowers TJ, Gaur PM, Laxmipathi Gowda CL, Krishnamurthy L, Samineni S, Siddique KHM, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Fu XJ, Maimaiti AS, Mou HM, Yang Q, Liu GJ (2011) Hexanoic acid 2-(diethylamino)ethyl ester enhances chilling tolerance in strawberry seedlings by impact on photosynthesis and antioxidants. Biol Plantarum 55:793–796

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Wu Q, He Z (2013) Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere 93:2782–2788

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer I (1968) Photoperoxidation in isolated chloroplasts I, kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O2 /H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog V, Fahimi H (1973) Determination of the activity of peroxidase. Anal Biochem 55:554–562

    Article  CAS  PubMed  Google Scholar 

  • Jespersen HM, Kjaersgard IVH, Stergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YP, Jiang YT, He S, Zhang HL, Pan CP (2012) Dissipation of diethyl aminoethyl hexanoate (DA-6) residues in pakchoi, cotton crops and soil. Bull Environ Contam Toxicol 88:533–537

    Article  CAS  PubMed  Google Scholar 

  • Joshi H, Kapoor VP (2003) Cassia grandis Linn. f. seed galactomannan: structural and crystallographical studies. Carbohyd Res 338:1907–1912

    Article  CAS  Google Scholar 

  • Korkmaz A (2005) Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper seeds. HortScience 40:197–200

    CAS  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plantarum 86:180–187

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48:251–275

    Article  CAS  Google Scholar 

  • Lee GY, Jang DS, Lee YM, Kim JM, Kim JS (2006) Naphthopyrone glucosides from the seeds of Cassia tora with inhibitory activity on advanced glycation end products (AGEs) formation. Arch Pharm Res 29:587–590

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:626–637

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu YH, Xu S, Ling TF, Xu LL, Shen WB (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Malash NM, Flowers TJ, Ragab R (2008) Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Plant Soil 26:313–323

    Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plantarum 133:481–489

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittle R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK (2006) Gain- and loss-of function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  CAS  PubMed  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G (2010) NO says more than 'YES' to salt tolerance: salt priming and systemic nitric oxide signaling in plants. Plant Signal Behav 5:209–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implication of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogenperoxide in Vigna seedlings. Physiol Plantarum 58:166–170

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ögren E, Öquist G (1984) Photoinhibition of photosynthesis in Lemna gibba as induced by the interaction between light and temperature. III. Chlorophyll fluorescence at 77 K. Physiol Plantarum 62:193–200

    Article  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141:758–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Rodríguez AA, Grunberg KA, Taleisnik EL (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    Article  PubMed  Google Scholar 

  • Roychoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:594

    Google Scholar 

  • Sayed OH (2003) Chlorophyll fluorescence as a tool in cereal research. Photosynthetica 41:321–330

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827

    Article  CAS  PubMed  Google Scholar 

  • Shan SM, Liu GJ, Li SH, Miao PF (2008) Effects of different concentration of DA-6 on photosynthesis and fruit quality in strawberry. Acta Hort Sin 35:587–590

    CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radicals scavenging activity of compatible isolates. Phytochemisiry 28:1057–1060

    Article  CAS  Google Scholar 

  • Storey R, Wyn-Jones RG (1975) Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci Lett 4:161–168

    Article  CAS  Google Scholar 

  • Sui N, Li M, Li K, Song J, Wang BS (2010) Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica 48:623–629

    Article  CAS  Google Scholar 

  • Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722

    Article  CAS  PubMed  Google Scholar 

  • Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Bioch 45:822–833

    Article  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  PubMed  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Xu DQ, Wu S (1996) Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica 32:417–423

    Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478

    Article  CAS  PubMed  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JH, Peng ZP, Huang JC, Li R, Zhan YZ (2008) Effect of DA-6 on physiological changes of peanut at anthesis under drought stress. Chin J Trop Crops 29:465–467

    Google Scholar 

  • Zamocky M, Janecek S, Koller F (2000) Common phylogeny of catalase-peroxidases and ascorbate peroxidases. Gene 256:169–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Chen LJ, He JL, Qian LS, Wu LQ, Wang RF (2010) Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress. Biol Plantarum 54:164–168

    Article  CAS  Google Scholar 

  • Zhang CP, Li YC, Yuan FG, Hu SJ, He P (2012) Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant Soil 359:85–105

    Article  CAS  Google Scholar 

  • Zhang CP, Li YC, Yuan FG, Hu SJ, Liu HY, He P (2013) The role of 5-aminolevulinic acid in the response to salinity stress in medicinal plant Cassia obtusifolia L. seeds and seedlings. Bot Stud 54:18–31

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. 31300222 and 81302744), Natural Science Foundation of Jiangsu Province (No. BK20130214), Natural Science Foundation of the Colleges and Universities in Jiangsu Province (No. 13KJB180025), Natural Science Foundation Project of CQ CSTC (No. cstc2013jcyjA50012), Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ130820), and the New Teacher Foundation of Chongqing University of Technology (No. 2012ZD24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunping Zhang or Shuo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., He, P., Li, Y. et al. Exogenous Diethyl Aminoethyl Hexanoate, a Plant Growth Regulator, Highly Improved the Salinity Tolerance of Important Medicinal Plant Cassia obtusifolia L.. J Plant Growth Regul 35, 330–344 (2016). https://doi.org/10.1007/s00344-015-9536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9536-3

Keywords

Navigation