Skip to main content
Log in

Hexanoic acid 2-(diethylamino)ethyl ester enhances chilling tolerance in strawberry seedlings by impact on photosynthesis and antioxidants

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Strawberry (Fragaria ananassa Duch.) seedlings were pretreated with hexanoic acid 2-(diethylamino)ethyl ester (DA-6) in concentrations of 0, 10, 20 and 40 mg dm−3 and then subjected to chilling and rewarming. The effects of applied DA-6 on the generation of reactive oxygen species (O2 , H2O2), lipid peroxidation, proline accumulation and photosynthesis were evaluated. Pretreatment with DA-6 alleviated the inhibition of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities caused by chilling stress thus reducing O2 and H2O2 production and lipid peroxidation in pretreated plants. DA-6 pretreatment also accelerated accumulation of proline and reduce the decrease in proline content after rewarming. DA-6 pretreatment increases maximum quantum yield of photosystem 2 (Fv/Fm), actual photochemical efficiency of photosystem 2 (ΦPS2), photochemical quenching coefficient (qP) and net photosynthetic rate (PN) and decreases non-photochemical quenching coefficient (qNP) of the seedlings under chilling stress. DA-6 pretreatment also increased the recovery rate of photosynthesis after rewarming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AsA:

ascorbate

APX:

ascorbate peroxidase

CAT:

catalase

DA-6:

hexanoic acid 2-(diethylamino) ethyl ester

Fv/Fm :

variable to maximum chlorophyll fluorescence (maximum quantum yield of photosystem 2)

GSH:

glutathione

MDA:

malondialdehyde

O2 :

superoxide radical

PN :

net photosynthetic rate

PS 2:

photosystem 2

qNP:

non-photochemical quenching coefficient

qP:

photochemical quenching coefficient

ROS:

reactive oxygen species

SOD:

superoxide dismutase

ΦPS2 :

actual photochemical efficiency of PS 2.

References

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Agati, G., Mazzinghi, P., Di Paola, M.L., Fusi, F., Cecchi, G.: The F685/F730 chlorophyll fluorescence ratio as indicator of chilling stress in plants. — J. Plant Physiol. 148: 384–390, 1996.

    CAS  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. — Plant Cell Environ. 24: 1337–1344, 2001.

    Article  CAS  Google Scholar 

  • Asada, K.: Ascorbate — a peroxidase hydrogen peroxide scavenging enzyme in plants. — Physiol. Plant. 85: 235–241, 1992.

    Article  CAS  Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and assay for acrylamide gels. — Anal. Biochem. 44: 267–278, 1971.

    Article  Google Scholar 

  • Bertamini, M., Zulini, L., Muthuchelian, K., Nedunchezhian, N: Low night temperature effects on photosynthetic performance on two grapevine genotypes. — Biol. Plant. 51: 381–385, 2007.

    Article  CAS  Google Scholar 

  • Dai, F., Huang, Y., Zhou, M., Zhang, G.: The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. — Biol. Plant. 53: 257–262, 2009.

    Article  CAS  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 90: 87–92, 1989.

    Google Scholar 

  • Griffith, O.W.: Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. — Anal. Biochem. 106: 207–212, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Gülen, H., Cetinkaya, C., Kadıoğlu, M., Kesici, M., Cansev, A., Eris, A.: Peroxidase activity and lipid peroxidation in strawberry (Fragaria × ananassa) plants under low temperature. — J. Biol. environ. Sci. 2: 95–100, 2008.

    Google Scholar 

  • Guo, F., Zhang, M., Chen, Y., Zhang, W., Xu, S., Wang, J., An, L.: Relation of several antioxidant enzymes to rapid freezing resistance in suspension cultured cells from alpine Chorispora bungeana. — Cryobiology 52: 241–250, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. — Biochem J. 210: 899–903, 1983.

    PubMed  CAS  Google Scholar 

  • Liu, X., Bai, L.: [Studies on the action of DA-6 reducing the phytotoxicity of ethametsulfuron on rice.] — Modern Agrochem. 4: 31–35, 2005. [In Chin.]

    Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. — Photosynth. Res. 10: 51–62, 1986.

    Article  CAS  Google Scholar 

  • Shan, S., Liu, G., Li, S., Miao, P.: [Effects of different concentration of DA-6 on photosynthesis and fruit quality in strawberry.] — Acta hort. sin. 35: 587–590, 2008. [In Chin.]

    CAS  Google Scholar 

  • Shao, L., Liang, G., Cai, H.: [Influence of hexanoic acid 2- (diethylamino) ethyl ester on some physiological indexes related to cold resistance of tomato (Lycopersicon esculentum Mill.) seedlings.] — Plant Physiol. Commun. 43: 1105–1108, 2007. [In Chin.]

    CAS  Google Scholar 

  • Sun, W., Duan, M., Li, F., Shu, D., Yang, S., Meng, Q.: Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. — Biol. Plant. 54: 614–620, 2010.

    Article  CAS  Google Scholar 

  • Xin, Z., Li, P.: Relationship between proline and abscisic acid in the induction of chilling tolerance in maize suspensioncultured cells. — Plant Physiol. 103: 607–613, 1993.

    PubMed  CAS  Google Scholar 

  • Yu, J., Peng, Z., Huang, J., Li, R., Zhan, Y.: [Effect of DA-6 on physiological changes of peanut at anthesis under drought stress.] — Chin. J. trop. Crops 29: 465–467, 2008. [In Chin.]

    Google Scholar 

  • Zhang, H., Xie, L., Xu, P., Jiang, S.: Dissipation of the plant growth regulator hexanoic acid 2-(diethylamino) ethyl ester in pakchoi and soil. — Int. J. Environ. Anal. Chem. 88: 561–569, 2008.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chen, L., He, J., Qian, L., Wu, L., Wang, R.: Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress. — Biol. Plant. 54: 164–168, 2010.

    Article  CAS  Google Scholar 

  • Zhang, Y., Tang, H., Luo, Y.: Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress. — World J. agr. Sci. 4: 458–462, 2008.

    Google Scholar 

  • Zhang, Z.: [Effects of DA-6 on seedling growth and its coldresistance in rice.] — Guizhou Agr. Sci. 29: 14–16, 2001. [In Chin.]

    CAS  Google Scholar 

  • Zhao, L., He, J., Wang, X., Zhang, L.: Nitric oxide protects against polyethyleneglycol-induced oxidative damage in two ecotypes of reed suspension cultures. — Plant Physiol. 165: 182–191, 2008.

    Article  CAS  Google Scholar 

  • Zhou, T., Hu, Y., Zhou, X., Wang, P., Guo, J.: [Effect of DA-6 on seedling photosynthesis and growth of wild barley Hordeu brevisubulatum.] — Pratacult. Sci. 21: 31–34, 2004. [In Chin.]

    Google Scholar 

  • Zhu, G., Deng, X., Zuo, W.: Determination of free proline in plants. — Plant Physiol.Commun. 1: 35–37, 1983.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Agriculture Special Fund for the Commonweal Industry of China (No. nyhyzx07-025) and the Qualitative Inspect Special Fund for the Commonweal Industry of China (No. 10-85).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. -J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X.J., Maimaiti, A.S., Mou, H.M. et al. Hexanoic acid 2-(diethylamino)ethyl ester enhances chilling tolerance in strawberry seedlings by impact on photosynthesis and antioxidants. Biol Plant 55, 793–796 (2011). https://doi.org/10.1007/s10535-011-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0190-8

Additional key words

Navigation