Skip to main content
Log in

Contrasting vertical distribution between prokaryotes and fungi in different water masses on the Ninety-East Ridge, Southern Indian Ocean

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Although the microbial diversity of the Indian Ocean has been extensively investigated, little is known about the community composition of microbes in the Southern Indian Ocean. In the present study, we divided 60 water column samples on the Ninety-East Ridge (NER) into five water masses according to the temperature-salinity curves. We presented, for the first time, a full description of the microbial biodiversity on NER through high-throughput amplicon sequencing approach, including bacteria, archaea, and fungi. We found that bacteria exhibited higher richness and diversity than archaea and fungi across the water masses on NER. More importantly, each water mass on NER featured distinct prokaryotic microbial communities, as indicated by the results of non-metric multidimensional scaling. In contrast, fungi were eurybathic across the water masses. Redundancy analysis results demonstrated that environmental factors might play a pivotal role in the formation and stability of prokaryotic communities in each water mass, especially that of archaea. In addition, indicator species might be used as fingerprints to identify corresponding water masses on NER. These results provide new insights into the vertical distribution, structure, and diversity of microorganisms on NER from the perspective of water mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The NovaSeq FASTQ files and the identifier barcode files were deposited in the National Center for Biotechnology Information Sequence Read Archive (SRA) under BioProject Accession No. PRJNA655383 (https://www.ncbi.nlm.nih.gov/sra/PRJNA655383).

References

  • Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349–355, https://doi.org/10.1038/nature04159.

    Article  Google Scholar 

  • Bokulich N A, Kaehler B D, Rideout J R, Dillon M, Bolyen E, Knight R, Huttley G A, Caporaso J G. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6: 90. https://doi.org/10.1186/s40168-018-0470-z.

    Article  Google Scholar 

  • Bolyen E, Rideout J R, Dillon M R, Bokulich N A, Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F, Bai Y, Bisanz J E, Bittinger K, Brejnrod A, Brislawn C J, Brown C T, Callahan B J, Caraballo-Rodríguez A M, Chase J, Cope E K, Da Silva R, Diener C, Dorrestein P C, Douglas G M, Durall D M, Duvallet C, Edwardson C F, Ernst M, Estaki M, Fouquier J, Gauglitz J M, Gibbons S M, Gibson D L, Gonzalez A, Gorlick K, Guo J R, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G A, Janssen S, Jarmusch A K, Jiang L J, Kaehler B D, Kang K B, Keefe C R, Keim P, Kelley S T, Knights D, Koester I, Kosciolek T, Kreps J, Langille M G I, Lee J, Ley R, Liu Y X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin B D, McDonald D, McIver L J, Melnik A V, Metcalf J L, Morgan S C, Morton J T, Naimey A T, Navas-Molina J A, Nothias L F, Orchanian S B, Pearson T, Peoples S L, Petras D, Preuss M L, Pruesse E, Rasmussen L B, Rivers A, Robeson M S II, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song S J, Spear J R, Swafford A D, Thompson L R, Torres P J, Trinh P, Tripathi A, Turnbaugh P J, Ul-Hasan S, van der Hooft J J J, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y H, Wang M X, Warren J, Weber K C, Williamson C H D, Willis A D, Xu Z Z, Zaneveld J R, Zhang Y L, Zhu Q Y, Knight R, Caporaso J G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852–857, https://doi.org/10.1038/s41587-019-0209-9.

    Article  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. 2008. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 6(3): 245–252, https://doi.org/10.1038/nrmicro1852.

    Article  Google Scholar 

  • Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7): 581–583, https://doi.org/10.1038/nmeth.3869.

    Article  Google Scholar 

  • Carini P, Dupont C L, Santoro A E. 2018. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environmental Microbiology, 20(6): 2112–2124, https://doi.org/10.1111/1462-2920.14107.

    Article  Google Scholar 

  • Celussi M, Bergamasco A, Cataletto B, Umani S F, Del Negro P. 2010. Water masses’ bacterial community structure and microbial activities in the Ross Sea, Antarctica. Antarctic Science, 22(4): 361–370, https://doi.org/10.1017/S0954102010000192.

    Article  Google Scholar 

  • Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11(4): 265–270.

    Google Scholar 

  • Choi H, Koh H W, Kim H, Chae J C, Park S J. 2016. Microbial community composition in the marine sediments of Jeju Island: next-generation sequencing surveys. Journal of Microbiology and Biotechnology, 26(5): 883–890, https://doi.org/10.4014/jmb.1512.12036.

    Article  Google Scholar 

  • Claesson M J, O’Sullivan O, Wang Q, Nikkilä J, Marchesi J R, Smidt H, de Vos W M, Ross R P, O’Toole P W. 2009. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One, 4(8): e6669, https://doi.org/10.1371/journal.pone.0006669.

    Article  Google Scholar 

  • Fuhrman J A, Cram J A, Needham D M. 2015. Marine microbial community dynamics and their ecological interpretation. Nature Reviews Microbiology, 13(3): 133–146, https://doi.org/10.1038/nrmicro3417.

    Article  Google Scholar 

  • Gao P, Qu L Y, Du G X, Wei Q S, Zhang X L, Yang G. 2021. Bacterial and archaeal communities in deep sea waters near the Ninetyeast Ridge in Indian Ocean. Journal of Oceanology and Limnology, 39(2): 582–597, https://doi.org/10.1007/s00343-020-9343-y.

    Article  Google Scholar 

  • Good I J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4): 237–264, https://doi.org/10.2307/2333344.

    Article  Google Scholar 

  • Guo X P, Lu D P, Niu Z S, Feng J N, Chen Y R, Tou F Y, Liu M, Yang Y. 2018. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Marine Pollution Bulletin, 126:141–149, https://doi.org/10.1016/j.marpolbul.2017.11.003.

    Article  Google Scholar 

  • Hackbusch S, Noirungsee N, Viamonte J, Sun X X, Bubenheim P, Kostka J E, Müller R, Liese A. 2020. Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the Gulf of Mexico. Marine Pollution Bulletin, 150: 110683, https://doi.org/10.1016/j.marpolbul.2019.110683.

    Article  Google Scholar 

  • Hanawa K, Talley L D. 2001. Mode waters. International Geophysics, 77: 373–386, https://doi.org/10.1016/S0074-6142(01)80129-7.

    Article  Google Scholar 

  • Hatzenpichler R. 2012. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Applied and Environmental Microbiology, 78(21): 7501–7510, https://doi.org/10.1128/AEM.01960-12.

    Article  Google Scholar 

  • Herrero A, Muro-Pastor A M, Flores E. 2001. Nitrogen control in cyanobacteria. Journal of Bacteriology, 183(2): 411–425, https://doi.org/10.1016/j.bmcl.2009.11.010.

    Article  Google Scholar 

  • Hoek J, Banta A, Hubler F, Reysenbach A L. 2003. Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology, 1(2): 119–127, https://doi.org/10.1046/j.1472-4669.2003.00015.x.

    Article  Google Scholar 

  • Ingole B, Koslow J A. 2005. Deep-sea ecosystems of the Indian Ocean. Indian Journal of Marine Sciences, 34(1): 27–34.

    Google Scholar 

  • Junior N A, Meirelles P M, de Oliveira Santos E, Dutilh B, Silva G G Z, Paranhos R, Cabral A S, Rezende C, Iida T, de Moura R L, Kruger R H, Pereira R C, Valle R, Sawabe T, Thompson C, Thompson F. 2015. Microbial community diversity and physical-chemical features of the Southwestern Atlantic Ocean. Archives of Microbiology, 197(2): 165–179, https://doi.org/10.1007/s00203-014-1035-6.

    Article  Google Scholar 

  • Kazutaka K, Kazuharu M, Ichi K K et al. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14): 3059–3066, https://doi.org/10.1093/nar/gkf436.

    Article  Google Scholar 

  • Key R M, Olsen A, van Heuven S, Lauvset S K, Velo A, Lin X H, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Perez F F, Suzuki T. 2015. Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, NDP-P093. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.

    Google Scholar 

  • Khandeparker R, Meena R M, Deobagkar D. 2014. Bacterial diversity in deep-sea sediments from Afanasy Nikitin Seamount, equatorial Indian Ocean. Geomicrobiology Journal, 31(10): 942–949, https://doi.org/10.1080/01490451.2014.918214.

    Article  Google Scholar 

  • Kõljalg U, Nilsson R H, Abarenkov K, Tedersoo L, Taylor A F S, Bahram M, Bates S T, Bruns T D, Bengtsson-Palme J, Callaghan T M, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith G W, Hartmann M, Kirk P M, Kohout P, Larsson E, Lindahl B D, Lücking R, Martín M P, Matheny P B, Nguyen N H, Niskanen T, Oja J, Peay K G, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott J A, Senés C, Smith M E, Suija A, Taylor D L, Telleria M T, Weiss M, Larsson K H. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22(21): 5271–5277, https://doi.org/10.1111/mec.12481.

    Article  Google Scholar 

  • Korlević M, Ristova P P, Garić R, Amann R, Orlić S. 2015. Bacterial diversity in the South Adriatic Sea during a strong, deep winter convection year. Applied and Environmental Microbiology, 81(5): 1715–1726, https://doi.org/10.1128/AEM.03410-14.

    Article  Google Scholar 

  • Krishna K S, Rao D G, Raju L V S, Chaubey A K, Shcherbakov V S, Pilipenko A I, Murthy I V R. 1999. Paleocene on-spreading-axis hotspot volcanism along the Ninetyeast Ridge: an interaction between the Kerguelen hotspot and the Wharton spreading center. Journal of Earth System Science, 108(4): 255–267, https://doi.org/10.1007/BF02840503.

    Article  Google Scholar 

  • Kuchi N, Khandeparker L. 2020. Influence of salinity stress on bacterial diversity from a marine bioinvasion perspective: evaluation through microcosm experiments. Current Science, 119(3): 507–525, https://doi.org/10.18520/cs/v119/i3/507-525.

    Article  Google Scholar 

  • Lauvset S K, Key R M, Olsen A, van Heuven S, Velo A, Lin X H, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Perez F F, Suzuki T, Watelet S. 2016. A new global interior ocean mapped climatology: the 1°×1° GLODAP version 2. Earth System Science Data, 8(2): 325–340, https://doi.org/10.5194/essd-8-325-2016.

    Article  Google Scholar 

  • Legendre P, Legendre L. 1998. Numerical Ecology. 2nd edn. Elsevier, Amsterdam.

    Google Scholar 

  • Li W, Wang M M, Burgaud G, Yu H M, Cai L. 2019a. Fungal community composition and potential depth-related driving factors impacting distribution pattern and trophic modes from epi- to abyssopelagic zones of the western Pacific Ocean. Microbial Ecology, 78(4): 820–831, https://doi.org/10.1007/s00248-019-01374-y.

    Article  Google Scholar 

  • Li Y T, Zhu X Y, Zhang W M, Zhu D C, Zhou X J, Zhang L K. 2019b. Archaeal communities in the deep-sea sediments of the South China Sea revealed by Illumina high-throughput sequencing. Annals of Microbiology, 69(8): 839–848, https://doi.org/10.1007/s13213-019-01477-4.

    Article  Google Scholar 

  • Liu Q F, Li J T, Wei B B, Zhang X Y, Zhang L, Zhang Y Z, Fang J S. 2016. Leeuwenhoekiella nanhaiensis sp. nov., isolated from deep-sea water. International Journal of Systematic and Evolutionary Microbiology, 66(3): 1352–1357, https://doi.org/10.1099/ijsem.0.000883.

    Article  Google Scholar 

  • Lovejoy C, Massana R, Pedrós-Alió C. 2006. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Applied and Environmental Microbiology, 72(5): 3085–3095, https://doi.org/10.1128/AEM.72.5.3085-3095.2006.

    Article  Google Scholar 

  • Maity J P, Chen C Y, Nath B, Bundschuh J, Bhattacharya P. 2012. Geothermal arsenic in Taiwan: geochemistry and microbial diversity. In: Ng J C, Noller B N, Naidu R, Bundschuh J, Bhattacharya P eds. Understanding the Geological and Medical Interface of Arsenic. Taylor & Francis Group, London. p.483–485.

    Google Scholar 

  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1): 10–12, https://doi.org/10.14806/ej.17.1.200.

    Article  Google Scholar 

  • Medina-Silva R, De Oliveira R R, Pivel M A G, Borges L G A, Simão T L L, Pereira L M, Trindade F J, Augustin A H, Valdez F P, Eizirik E, Utz L R P, Groposo C, Miller D J, Viana A R, Ketzer J M M, Giongo A. 2018. Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean. Journal of Marine Systems, 178: 52–61, https://doi.org/10.1016/j.jmarsys.2017.10.008.

    Article  Google Scholar 

  • Nagano Y, Nagahama T. 2012. Fungal diversity in deep-sea extreme environments. Fungal Ecology, 5(4): 463–471, https://doi.org/10.1016/j.funeco.2012.01.004.

    Article  Google Scholar 

  • Olsen A, Key R M, van Heuven S, Lauvset S K, Velo A, Lin X H, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Pérez F F, Suzuki T. 2016. The global ocean data analysis project version 2 (GLODAPv2) — an internally consistent data product for the world ocean. Earth System Science Data, 8(2): 297–323, https://doi.org/10.5194/essd-8-297-2016.

    Article  Google Scholar 

  • Orsi W D, Smith J M, Liu S T, Liu Z F, Sakamoto C M, Wilken S, Poirier C, Richards T A, Keeling P J, Worden A Z, Santoro A E. 2016. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME Journal, 10(9): 2158–2173, https://doi.org/10.1038/ismej.2016.20.

    Article  Google Scholar 

  • Park P K. 1969. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 167. J. D. H. Strickland, T. R. Parsons. The Quarterly Review of Biology, 44(3): 327.

    Article  Google Scholar 

  • Park S J, Kim J G, Jung M Y, Kim S J, Cha I T, Ghai R, Martín-Cuadrado A B, Rodríguez-Valera F, Rhee S K. 2012. Draft genome sequence of an ammonia-oxidizing archaeon, “Candidatus Nitrosopumilus sediminis” AR2, from Svalbard in the Arctic Circle. Journal of Bacteriology, 194(24): 6948–6949, https://doi.org/10.1128/JB.01869-12.

    Article  Google Scholar 

  • Pereira O, Hochart C, Auguet J et al. 2019. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. MicrobiologyOpen, 8(9): e00852, https://doi.org/10.1002/mbo3.852.

    Article  Google Scholar 

  • Pester M, Schleper C, Wagner M. 2011. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology, 14(3): 300–306, https://doi.org/10.1016/j.mib.2011.04.007.

    Article  Google Scholar 

  • Picard A, Daniel I. 2013. Pressure as an environmental parameter for microbial life—a review. Biophysical Chemistry, 183: 30–41, https://doi.org/10.1016/j.bpc.2013.06.019.

    Article  Google Scholar 

  • Pielou E C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13: 131–144, https://doi.org/10.1016/0022-5193(66)90013-0.

    Article  Google Scholar 

  • Pires A C C, Cleary D F R, Almeida A, Cunha Â, Dealtry S, Mendonça-Hagler L C S, Smalla K, Gomes N C M. 2012. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Applied and Environmental Microbiology, 78(16): 5520–5528, https://doi.org/10.1128/AEM.00386-12.

    Article  Google Scholar 

  • Pommier T, Canbäck B, Riemann L, Boström K H, Simu K, Lundberg P, Tunlid A, Hagström Å. 2007. Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16(4): 867–880, https://doi.org/10.1111/j.1365-294X.2006.03189.x.

    Article  Google Scholar 

  • Price M N, Dehal P S, Arkin A P. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26(7): 1641–1650, https://doi.org/10.1093/molbev/msp077.

    Article  Google Scholar 

  • Qian G, Wang J, Kan J J, Zhang X D, Xia Z Q, Zhang X C, Miao Y Y, Sun J. 2018. Diversity and distribution of anammox bacteria in water column and sediments of the eastern Indian Ocean. International Biodeterioration & Biodegradation, 133: 52–62, https://doi.org/1016/j.ibiod.2018.05.015.

    Article  Google Scholar 

  • Qin H M, Gao D K, Zhu M L, Li C, Zhu Z L, Wang H B, Liu W D, Tanokura M, Lu F P. 2020. Biochemical characterization and structural analysis of ulvan lyase from marine Alteromonas sp. reveals the basis for its salt tolerance. International Journal of Biological Macromolecules, 147: 1309–1317, https://doi.org/10.1016/j.ijbiomac.2019.10.095.

    Article  Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German C R, Levin L A, Arbizu P M, Menot L, Buhl-Mortensen P, Narayanaswamy B E, Smith C R, Tittensor D P, Tyler P A, Vanreusel A, Vecchione M. 2010. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences, 7(9): 2851–2899, https://doi.org/10.5194/bg-7-2851-2010.

    Article  Google Scholar 

  • Reintjes G, Tegetmeyer H E, Bürgisser M, Orlić S, Tews I, Zubkov M, Voß D, Zielinski O, Quast C, Glöckner F O, Amann R, Ferdelman T G, Fuchs B M. 2019. On-site analysis of bacterial communities of the ultraoligotrophic south Pacific gyre. Applied and Environmental Microbiology, 85(14): e00184–19, https://doi.org/10.1128/AEM.00184-19.

    Article  Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet G A, Lindahl B D, Menkis A, James T Y. 2011. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science, 333(6044): 876–879, https://doi.org/10.1126/science.1206958.

    Article  Google Scholar 

  • Rosling A, Timling I, Taylor L. 2013. Archaeorhizomycetes: patterns of distribution and abundance in soil. In: Horwitz B, Mukherjee P, Mukherjee M, Kubicek C eds. Genomics of Soil- and Plant-Associated Fungi. Springer, Berlin, Heidelberg. p.333–349, https://doi.org/10.1007/978-3-642-39339-6_14.

    Chapter  Google Scholar 

  • Sayed A M, Hassan M H A, Alhadrami H A, Hassan H M, Goodfellow M, Rateb M E. 2020. Extreme environments: microbiology leading to specialized metabolites. Journal of Applied Microbiology, 128(3): 630–657, https://doi.org/10.1111/jam.14386.

    Article  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W S, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol., 12: R60, https://doi.org/10.1186/gb-2011-12-6-r60.

    Article  Google Scholar 

  • Shannon C E. 1948. A mathematical theory of communication. The Bell System Technical Journal, 27(4): 623–656, https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

    Article  Google Scholar 

  • Simpson E H. 1949. Measurement of diversity. Nature, 163(4148): 688, https://doi.org/10.1038/163688a0.

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y. 2011. Fungal community analysis in the deep-sea sediments of the central Indian basin by culture-independent approach. Microbial Ecology, 61(3): 507–517, https://doi.org/10.1007/s00248-010-9765-8.

    Article  Google Scholar 

  • Sinha R K, Krishnana K P, Thomas F A, Binish M B, Mohan M, Kurian P J. 2019. Polyphasic approach revealed complex bacterial community structure and function in deep sea sediment of ultra-slow spreading Southwest Indian Ridge. Ecological Indicators, 96: 50–51, https://doi.org/10.1016/j.ecolind.2018.08.063.

    Article  Google Scholar 

  • Sunagawa S, Coelho L P, Chaffron S, Kultima J R, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende D R, Alberti A, Cornejo-Castillo F M, Costea P I, Cruaud C, d’Ovidio F, Engelen S, Ferrera I, Gasol J M, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos B T, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans coordinators, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan M B, Weissenbach J, Wincker P, Karsenti E, Raes R, Acinas S G, Bork P. 2015. Structure and function of the global ocean microbiome. Science, 348(6237): 1261359, https://doi.org/10.1126/science.1261359.

    Article  Google Scholar 

  • Sverdrup H U, Johnson M W, Fleming R H. 1942. The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, New York.

    Google Scholar 

  • Uraibi H S, Midi H, Rana S. 2017. Selective overview of forward selection in terms of robust correlations. Communications in Statistics — Simulation and Computation, 46(7): 5479–5503, https://doi.org/10.1080/03610918.2016.1164862.

    Article  Google Scholar 

  • Wang J, Kan J J, Borecki L, Zhang X D, Wang D X, Sun J. 2016. A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean. Acta Oceanologica Sinica, 35(6): 85–93, https://doi.org/10.1007/s13131-016-0871-4.

    Article  Google Scholar 

  • Wang Y Y, Liao S L, Gai Y B, Liu G L, Jin T, Liu H, Gram L, Strube M L, Fan G Y, Sahu S K, Liu S S, Gan S H, Xie Z X, Kong L F, Zhang P F, Liu X, Wang D Z. 2021. Metagenomic analysis reveals microbial community structure and metabolic potential for nitrogen acquisition in the oligotrophic surface water of the Indian Ocean. Frontiers in Microbiology, 12: 518865, https://doi.org/10.3389/fmicb.2021.518865.

    Article  Google Scholar 

  • Wang Z P, Liu Z Z, Wang Y L, Bi W H, Liu L, Wang H Y, Zheng Y, Zhang L L, Hu S G, Xu S S, Zhang P. 2019. Fungal community analysis in seawater of the Mariana Trench as estimated by Illumina HiSeq. RSC Advances, 9(12): 6956–6964, https://doi.org/10.1039/c8ra10142f.

    Article  Google Scholar 

  • Wemheuer F, von Hoyningen-Huene A J E, Pohlner M, Degenhardt J, Engelen B, Daniel R, Wemheuer B. 2019. Primary production in the water column as major structuring element of the biogeographical distribution and function of archaea in deep-sea sediments of the central Pacific Ocean. Archaea, 2019: 3717239, https://doi.org/10.1155/2019/3717239.

    Article  Google Scholar 

  • White T J, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. Academic Press, London. p.315–322, https://doi.org/10.1016/B978-0-12-372180-8.50042-1.

    Google Scholar 

  • Winter C, Matthews B, Suttle C A. 2013. Effects of environmental variation and spatial distance on bacteria, archaea and viruses in sub-polar and arctic waters. ISME Journal, 7(8): 1507–1518, https://doi.org/10.1038/ismej.2013.56.

    Article  Google Scholar 

  • Xia X M, Guo W, Liu H B. 2017. Basin scale variation on the composition and diversity of archaea in the Pacific Ocean. Frontiers in Microbiology, 8: 2057, https://doi.org/10.3389/fmicb.2017.02057.

    Article  Google Scholar 

  • Xu W, Pang K L, Luo Z H. 2014. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microbial Ecology, 68(4): 688–698, https://doi.org/10.1007/s00248-014-0448-8.

    Article  Google Scholar 

  • Yang C Y, Li Y, Zhou B, Zhou Y Y, Zheng W, Tian Y, Van Nostrand J D, Wu L Y, He Z L, Zhou J Z, Zheng T L. 2015. Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen Sea, China. Scientific Reports, 5: 8476, https://doi.org/10.1038/srep08476.

    Article  Google Scholar 

  • Yao M R, Gao G P, Philips H E, Hu D H. 2017. Hydrographic features and water masses of southeast Indian Ocean region. Journal of PLA University of Science and Technology (Natural Science Edition), 18(2): 170–176, https://doi.org/10.12018/jissn.1009-3443.20170115001. (in Chinese with English abstract)

    Google Scholar 

  • Yoshida K, Takano K, Teramoto T, Toba Y, Nagata Y, Kajiura K, Nannichi T, Iwata N, Takahashi T, Chaen M, Tabata T. 1971. Physical oceanography. Journal of the Oceanographical Society of Japan, 27(6): 248–264, https://doi.org/10.1007/BF02109744.

    Article  Google Scholar 

  • Zhao Q Q, Bai J H, Gao Y C, Zhao H X, Zhang G L, Cui B S. 2020. Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degradation and Development, 31(16): 2255–2267, https://doi.org/10.1002/ldr.3594.

    Article  Google Scholar 

Download references

Acknowledgment

This is the Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education (MCTL) (Contribution No. 249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhisong Cui or Mutai Bao.

Additional information

Supported by the China Ocean Mineral Resources R&D Association (Nos. DY135-B2-11, DY135-E2-4), the National Natural Science Foundation of China (No. 42076165), the Natural Science Foundation of Shandong Province (No. ZR2018MD017), the National Key Research and Development Program (No. 2016YFC1402301), and the Fundamental Research Funds for the Central Universities (No. 201822009)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cui, Z., Bao, M. et al. Contrasting vertical distribution between prokaryotes and fungi in different water masses on the Ninety-East Ridge, Southern Indian Ocean. J. Ocean. Limnol. 40, 605–619 (2022). https://doi.org/10.1007/s00343-021-1046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1046-5

Keyword

Navigation