Skip to main content
Log in

A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Besides being critical components of marine food web, microorganisms play vital roles in biogeochemical cycling of nutrients and elements in the ocean. Currently little is known about microbial population structure and their distributions in the eastern Indian Ocean. In this study, we applied molecular approaches including polymerase chain reaction-denaturant gradient gel electrophoresis (PCR-DGGE) and High-Throughput next generation sequencing to investigate bacterial 16S rRNA genes from the equatorial regions and the adjacent Bay of Bengal in the eastern Indian Ocean. In general, Bacteroidetes, Proteobacteria (mainly Alpha, and Gamma), Actinobacteria, Cyanobacteria and Planctomycetes dominated the microbial communities. Horizontally distinct spatial distribution of major microbial groups was observed from PCR-DGGE gel image analyses. However, further detailed characterization of community structures by pyrosequencing suggested a more pronounced stratified distribution pattern: Cyanobacteria and Actinobacteria were more predominant at surface water (25 m); Bacteroidetes dominated at 25 m and 150 m while Proteobacteria (mainly Alphaproteobacteria) occurred more frequently at 75 m water depth. With increasing water depth, the bacterial communities from different locations tended to share high similarity, indicating a niche partitioning for minor groups of bacteria recovered with high throughput sequencing approaches. This study provided the first “snapshot” on biodiversity and spatial distribution of Bacteria in water columns in the eastern Indian Ocean, and the findings further emphasized the potential functional roles of these microbes in energy and resource cycling in the eastern Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral-Zettler L, Artigas L F, Baross J, et al. 2010. A global census of marine microbes. In: McIntyre A D, ed. Life in the World’s Oceans: Diversity, Distribution, and Abundance. Oxford: Wiley-Blackwell Publishing Ltd, 223–245

    Google Scholar 

  • Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349–355

    Article  Google Scholar 

  • Azam F, Steward G F, Smith D C, et al. 1994. Significance of bacteria in carbon fluxes in the Arabian Sea. Proc Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 103(2): 341–351

    Google Scholar 

  • Bharathi P A L, Nair S. 2005. Rise of the dormant: simulated disturbance improves culturable abundance, diversity, and functions of deep-sea bacteria of Central Indian Ocean Basin. Mar Georesour Geotechnol, 23(4): 419–428

    Article  Google Scholar 

  • Bouteiller A L, Blanchot J, Rodier M. 1992. Size distribution patterns of phytoplankton in the western Pacific: towards a generalization for the tropical open ocean. Deep Sea Research Part A: Oceanographic Research Papers, 39(5): 805–823

    Article  Google Scholar 

  • Brinkhoff T, Giebel H A, Simon M. 2008. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol, 189(6): 531–539

    Article  Google Scholar 

  • Brown M V, Philip G K, Bunge J A, et al. 2009. Microbial community structure in the North Pacific Ocean. ISME J, 3(12): 1374–1386

    Article  Google Scholar 

  • Buchan A, Neidle E L, Moran M A. 2004. Diverse organization of genes of the β-ketoadipate pathway in members of the marine Roseobacter lineage. Appl Environ Microbiol, 70(3): 1658–1668

    Article  Google Scholar 

  • Burkill P H. 2002. Microbial dynamics. In: Watts L, Burkill P, Smith S, eds. Arabian, Sea Process Study. Bergen, Norway: JGOFS International Planning Office

    Google Scholar 

  • Clarke K R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol, 18(1): 117–143

    Article  Google Scholar 

  • Cole S E, LaRiviere F J, Merrikh C N, et al. 2009. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol Cell, 34(4): 440–450

    Article  Google Scholar 

  • da Silva M A C, Cavalett A, Spinner A, et al. 2013. Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. SpringerPlus, 2(1): 127, doi: 10.1186/2193–1801–2127

    Article  Google Scholar 

  • Du Jikun, Xiao Kai, Li Li, et al. 2013. Temporal and spatial diversity of bacterial communities in coastal waters of the South China Sea. PLoS One, 8(6): e66968

    Article  Google Scholar 

  • Edgar R C, Haas B J, Clemente J C, et al. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2194–2200

    Article  Google Scholar 

  • Emerson D, Fleming E J, McBeth J M. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol, 64(1): 561–583

    Article  Google Scholar 

  • Fennel K, Follows M, Falkowski P G. 2005. The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci, 305(6–8): 526–545

    Article  Google Scholar 

  • Fernández-Gómez B, Richter M, Schüler M, et al. 2013. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J, 7(5): 1026–1037

    Article  Google Scholar 

  • Fine R A, Smethie W M, Bullister J L, et al. 2008. Decadal ventilation and mixing of Indian Ocean waters. Deep Sea Research Part I: Oceanographic Research Papers, 55(1): 20–37

    Article  Google Scholar 

  • Fuhrman J A, McCallum K, Davis A A. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol, 59(5): 1294–1302

    Google Scholar 

  • Fuhrman J A, Steele J A. 2008. Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat Microb Ecol, 53(1): 69–81

    Article  Google Scholar 

  • Glöckner F O, Fuchs B M, Amann R. 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol, 65(8): 3721–3726

    Google Scholar 

  • Goñi-Urriza M, de Montaudouin X, Guyoneaud R, et al. 1999. Effect of macrofaunal bioturbation on bacterial distribution in marine sandy sediments, with special reference to sulphur-oxidising bacteria. J Sea Res, 41(4): 269–279

    Article  Google Scholar 

  • Han D, Ha H K, Hwang C Y, et al. 2014. Bacterial distribution along stratified water columns in the Pacific sector of the Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, doi: 10.1016/j.dsr2.2014.06.007

    Google Scholar 

  • Hoek J, Banta A, Hubler F, et al. 2003. Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology, 1(2): 119–127

    Article  Google Scholar 

  • Hood R R, Wiggert J D, Naqvi S W A. 2009. Indian ocean research: opportunities and challenges. In: Wiggert J D, Hood R R, Naqvi S W A, eds. Indian Ocean Biogeochemical Processes and Ecological Variability. Geophysical Monograph Series Washington, DC: American Geophysical Union, 409–429

    Chapter  Google Scholar 

  • Ivanova E P, Gorshkova N M, Sawabe T, et al. 2004. Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). Int J Syst Evol Microbiol, 54(2): 475–480

    Article  Google Scholar 

  • Jason S, Siddiqui P J A, Walsby A E, et al. 1995. Cytomorphological characterization of the planktonic diazotrophic cyanobacteria Trichodesmium spp. from the Indian Ocean and Caribbean and Sargasso Seas. J Phycol, 31(3): 463–477

    Article  Google Scholar 

  • Jiao Nianzhi, Zhang Yao, Zeng Yonghui, et al. 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol, 9(12): 3091–3099

    Article  Google Scholar 

  • Johnson R M, Schwent R M, Press W. 1968. The characteristics and distribution of marine bacteria isolated from the Indian Ocean. Limnol Oceanogr, 13(4): 656–664

    Article  Google Scholar 

  • Kabisch A, Otto A, König S, et al. 2014. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J, 8(7): 1492–1502

    Article  Google Scholar 

  • Kan Jinjun, Crump B C, Wang Kui, et al. 2006a. Bacterioplankton community in Chesapeake Bay: predictable or random assemblages. Limnol Oceanogr, 51(5): 2157–2169

    Article  Google Scholar 

  • Kan Jinjun, Wang Kui, Chen Feng. 2006b. Temporal variation and detection limit of an estuarine bacterioplankton community analyzed by denaturing gradient gel electrophoresis (DGGE). Aquat Microb Ecol, 42(1): 7–18

    Article  Google Scholar 

  • Keller M, Zengler K. 2004. Tapping into microbial diversity. Nat Rev Microbiol, 2(2): 141–150

    Article  Google Scholar 

  • Khandeparker R, Meena R M, Deobagkar D. 2014. Bacterial diversity in deep-sea sediments from Afanasy Nikitin seamount, equatorial Indian Ocean. Geomicrobiol J, 31(10): 942–949

    Article  Google Scholar 

  • Kirchman D L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol, 39(2): 91–100

    Google Scholar 

  • Konstantinidis K T, DeLong E F. 2008. Genomic patterns of recombination, clonal divergence and environment in marine microbial populations. ISME J, 2(10): 1052–1065

    Article  Google Scholar 

  • Kumar S P, Muraleedharan P M, Prasad T G, et al. 2002. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?. Geophys Res Lett, 29(24): 881–884, doi: 10.1029/2002GL016013

    Article  Google Scholar 

  • Kumar S P, Narvekar J, Nuncio M, et al. 2009. What drives the biological productivity of the northern Indian Ocean?. In: Wiggert J D, Hood R R, Naqvi S W A, et al., eds. Indian Ocean Biogeochemical Processes and Ecological Variability. Washington, DC: American Geophysical Union, 33–56

    Chapter  Google Scholar 

  • Kumar S P, Nuncio M, Narvekar J, et al. 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?. Geophys Res Lett, 31(7): L07309, doi: 10.1029/2003GL019274

    Google Scholar 

  • McCreary J P, Yu Z, Hood R R, et al. 2013. Dynamics of the Indian-Ocean oxygen minimum zones. Prog Oceanogr, 112–113: 15–37

    Article  Google Scholar 

  • Madhupratap M, Gauns M, Ramaiah N, et al. 2003. Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep Sea Research Part II: Topical Studies in Oceanography, 50(5): 881–896

    Article  Google Scholar 

  • Moran M A, Armbrust E V. 2007. Genomes of sea microbes. Oceanogr, 20(2): 47–55

    Article  Google Scholar 

  • Moran M A, Belas R, Schell M A, et al. 2007. Ecological genomics of marine Roseobacters. Appl Environ Microbiol, 73(14): 4559–4569

    Article  Google Scholar 

  • Mosher J J, Bernberg E L, Shevchenko O, et al. 2013. Efficacy of a 3rd generation high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. J Microbiol Methods, 95(2): 175–181

    Article  Google Scholar 

  • Muyzer G, de Waal E C, Uitterlinden A G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 59(3): 695–700

    Google Scholar 

  • Nair S, Bharathi P A L, Chandramohan D. 1994. Culturable heterotrophic bacteria from the euphotic zone of the Indian-Ocean during the summer monsoon. Oceanologica Acta, 17(1): 63–68

    Google Scholar 

  • Nyadjro E, Subrahmanyam B, Giese B S. 2013. Variability of salt flux in the Indian Ocean during 1960–2008. Remote Sens Environ, 134: 175–193

    Article  Google Scholar 

  • Oren A. 2014. Cyanobacteria: biology, ecology and evolution. In: Sharma N K, Rai A K, Stal L, eds. Cyanobacteria: An Economic Perspective. Oxford: Wiley-Blackwell, 1–20

    Google Scholar 

  • Pace N R. 1997. A molecular view of microbial diversity and the biosphere. Science, 276(5313): 734–740

    Article  Google Scholar 

  • Parkes R J, Sellek G, Webster G, et al. 2009. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol, 11(12): 3140–3153

    Article  Google Scholar 

  • Parsons T R, Maita Y, Lalli C M. 1984. Determination of chlorophylls and total carotenoids: spectrophotometric method. In: Parsons T R, Maita Y, Lalli C M, eds. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamin Press, 101–112

    Chapter  Google Scholar 

  • Priest F G. 1993. Systematics and ecology of Bacillus. In: Sonenshein A L, Hoch J A, Losick R, eds. Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics. Washington: American Society for Microbiology Press

    Google Scholar 

  • Pukall R, Buntefuβ D, Frühling A, et al. 1999. Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the a-Proteobacteria. Int J Syst Evol Microbiol, 49(2): 513–519

    Google Scholar 

  • Rao C K, Naqvi S W A, Kumar M D, et al. 1994. Hydrochemistry of the Bay of Bengal: possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea. Mar Chem, 47(3–4): 279–290

    Article  Google Scholar 

  • Rixen T, Ramaswamy V, Gaye B, et al. 2008. Monsoonal and ENSO impacts on particle fluxes and the biological pump in the Indian Ocean. In: Wiggert J D, Hood R R, Naqvi S W A, et al., eds. Indian Ocean Biogeochemical Processes and Ecological Variability. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 365–383

    Google Scholar 

  • SAS Institute Inc. 2008. SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute Inc

    Google Scholar 

  • Schauer R, Bienhold C, Ramette A, et al. 2010. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J, 4(2): 159–170

    Article  Google Scholar 

  • Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75(23): 7537–7541

    Article  Google Scholar 

  • Schott F A, McCreary J P. 2001. The monsoon circulation of the Indian Ocean. Prog Oceanogr, 51(1): 1–123

    Article  Google Scholar 

  • Srinivas B, Sarin M M. 2013. Atmospheric deposition of N, P and Fe to the Northern Indian Ocean: implications to C-and N-fixation. Sci Total Environ, 456–457: 104–114

    Article  Google Scholar 

  • Srinivas B, Sarin M M, Sarma V V S S. 2011. Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: impact of continental outflow. Mar Chem, 127(1–4): 170–179

    Article  Google Scholar 

  • Suess E. 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288(5788): 260–263

    Article  Google Scholar 

  • Suh S S, Park M, Hwang J, et al. 2014. Distinct patterns of marine bacterial communities in the South and North Pacific Oceans. J Microbiol, 52(10): 834–841

    Article  Google Scholar 

  • Treusch A H, Vergin K L, Finlay L A, et al. 2009. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J, 3(10): 1148–1163

    Article  Google Scholar 

  • Ward A C, Bora N. 2006. Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol, 9(3): 279–286

    Article  Google Scholar 

  • Whitman W B, Coleman D C, Wiebe W J. 1998. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A, 95(12): 6578–6583

    Article  Google Scholar 

  • Wilkins D, van Sebille E, Rintoul S R, et al. 2013. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat Commun, 4: 2457, doi: 10.1038/ncomms3457

    Article  Google Scholar 

  • Woebken D, Lam P, Kuypers M M M, et al. 2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol, 10(11): 3106–3119

    Article  Google Scholar 

  • Wu Houbo, Guo Yatao, Wang Guanghua, et al. 2011. Composition of bacterial communities in deep-sea sediments from the South China Sea, the Andaman Sea and the Indian Ocean. Afr J Microbiol Res, 5(29): 5273–5283

    Google Scholar 

  • Yuan Jun, Lai Qiliang, Zheng Tianling, et al. 2009. Novosphingobium indicum sp. Nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol, 59(8): 2084–2088

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Additional information

Foundation item: The Program for New Century Excellent Talents in University under contract No. NCET-12-1065; the National Natural Science Foundation of China under contract Nos 41276124 and 41176136; the Science Fund for University Creative Research Groups in Tianjin under contract No. TD12-5003; the Program for Changjiang Scholars to J Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Kan, J., Borecki, L. et al. A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean. Acta Oceanol. Sin. 35, 85–93 (2016). https://doi.org/10.1007/s13131-016-0871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0871-4

Keywords

Navigation