Skip to main content

Archaeorhizomycetes: Patterns of Distribution and Abundance in Soil

  • Chapter
  • First Online:
Genomics of Soil- and Plant-Associated Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 36))

Abstract

Soil fungal ecology has developed tremendously with the introduction of environmental sequencing. The soil under our feet harbors great fungal diversity including species and even lineages of unknown identity. Beyond identification we can use environmental sequences to trace distribution patterns of species and lineages to better understand their life strategies and ecological roles. Environmental sequences provide the largest available source of information on the ecology of Archaeorhizomycetes, a class of globally distributed ubiquitous soil fungi for which there are no known fruiting structures and only two of over 250 estimated species have been cultured.

The class was initially known as the Soil Clone Group 1 (SCG1) (Porter et al., Mol Phylogenet Evol 46:635–644, 2008) based on environmental sequences from four diverse ecosystems and 12 published studies. Porter et al. highlighted two important features of the class Archaeorhizomycetes: its broad distribution across diverse ecosystems as well as its high species diversity within sites. When the class of Archaeorhizomycetes was formally described by Rosling et al. (Science 333: 876–879, 2011), thousands of ITS sequences were available in public databases. Based on metadata associated with these sequences, ecosystem specificity and geographic distribution patterns emerged among several putative species, i.e., OTUs, within the class. In this chapter, we expand upon earlier analyses of distribution by adding complementary datasets including environmental LSU and SSU sequences. Habitat specificity and geographic distribution are further analyzed using public and previously unpublished sequences from ten field studies in Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909

    Article  Google Scholar 

  • Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Chang Biol 14:1–13

    Google Scholar 

  • Allison SD, Gartner TB, Mack MC, McGuire K, Treseder KK (2010a) Nitrogen alter carbon dynamics during early succession in boreal forest. Soil Biol Biochem 42:1157–1164

    Article  CAS  Google Scholar 

  • Allison SD, McGuire KL, Treseder KK (2010b) Resistance of microbial and soil properties to warming treatment seven years after boreal fire. Soil Biol Biochem 42:1872–1878

    Article  CAS  Google Scholar 

  • Bärlocher F, Seena S, Wilson KP, Williams DD (2008) Raised water temperature lowers diversity of hyporheic aquatic Hyphomycetes. Freshw Biol 53:368–379

    Google Scholar 

  • Beiler KJ, Simard SW, Lemay V, Durall DM (2012) Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas-fir forest. Mol Ecol 21:6163–6174

    Article  PubMed  Google Scholar 

  • Bent E, Kiekel P, Brenton R, Taylor DL (2011) Root-associated ectomycorrhizal fungi shared by various Boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses. Appl Environ Microbiol 77:3351–3359

    Article  PubMed  CAS  Google Scholar 

  • Bjorbaekmo MFM, Carlsen T, Brysting A, Vrålstad T, Hoiland K, Ugland KI, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10:244

    Article  PubMed  Google Scholar 

  • Bougoure DS, Parkin PI, Cairney JWG, Alexander IJ, Anderson IA (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4626–4636

    Article  Google Scholar 

  • Buscardo E, Rodriquez-Echeverria S, Martin MP, de Anfelis P, Pereira JS, Freitas H (2010) Impact of wildfire return interval on ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol 114:628–636

    Article  PubMed  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Chen DM, Cairney JWG (2002) Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites. Mycol Res 106:532–540

    Article  CAS  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113

    Article  PubMed  Google Scholar 

  • Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG (2010) Diversity of soil and rhizosphere fungi under Araucaria bidwillii (Bunya pine) at an Australian tropical montane rainforest site. Fungal Divers 40:12–22

    Article  Google Scholar 

  • Deslippe JR, Hartmann M, Simard SW, Mohn WW (2012) Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol Ecol 82:30–315

    Article  Google Scholar 

  • Edwards IP, Zak DR (2011) Fungal community composition and function after long- term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Glob Chang Biol 17:2184–2195

    Article  Google Scholar 

  • Hawksworth DL (2012) Global species number of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433

    Article  Google Scholar 

  • Huang J, Nara K, Lian C, Zong K, Peng K, Xue S, Shen Z (2012) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb–Zn mine sites of central south China. Mycorrhiza 22:589–602

    Article  PubMed  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Lindahl BD, de Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J 4:872–881

    Article  PubMed  Google Scholar 

  • Lozupone C, Hamady M, Knight R (2006) UniFrac - an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371

    Article  PubMed  Google Scholar 

  • Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109

    Article  PubMed  Google Scholar 

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data. Version 5. MjM Software, Gleneden Beach, OR

    Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR

    Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, LA, pp 1–8, 14 Nov 2010

    Google Scholar 

  • Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174

    Article  PubMed  Google Scholar 

  • Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Senton L, Vilgalys R, Moncalvo JM (2008) Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogenet Evol 46:635–644

    Article  PubMed  CAS  Google Scholar 

  • Rajala T, Peltoniemi M, Hantula J, Mäkipää R, Pennanen T (2011) RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fungal Ecol 4:437–448

    Article  Google Scholar 

  • Rincon A, Pueyo JJ (2010) Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. Seedlings. For Ecol Manage 260:361–369

    Article  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungi in a podzol profile. New Phytol 159:775–783

    Article  CAS  Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet G-A, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes - a new class of ancient, widespread soil fungi. Science 333:876–879

    Article  PubMed  CAS  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  PubMed  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Hubndorf S, Robert V, Spouge JL, Levesque A, Chen W, Fungal barcoding consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  PubMed  CAS  Google Scholar 

  • Stefani FOP, Moncalvo J-M, Séguin A, Bérubé FA, Hamelin RC (2009) Impact of an 8-year-old transgenic poplar plantation on the ectomycorrhizal fungal community. Appl Environ Microbiol 75:7527–7536

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Herriott IC, Long J, O’Neill K (2007) TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction. Environ Microbiol 9:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Booth MG, McFarland JW, Herriott IC, Lennon NJ, Nusbaum C, Marr TG (2008) Increasing ecological inference from high throughput sequencing of fungi in the environment through a tagging approach. Mol Ecol Res 8:742–752

    Article  CAS  Google Scholar 

  • Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB (2010) Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J Forest Res 40:1288–1301

    Article  CAS  Google Scholar 

  • Tedersoo L, Pärtel K, Jairus T, Gates G, Poldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178

    Article  PubMed  CAS  Google Scholar 

  • Urban A, Puschenreiter M, Strauss J, Gorfer M (2008) Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 18:339–354

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, CA, pp 315–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Rosling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosling, A., Timling, I., Taylor, D.L. (2013). Archaeorhizomycetes: Patterns of Distribution and Abundance in Soil. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_14

Download citation

Publish with us

Policies and ethics