Skip to main content
Log in

Informing TiRe-LII assumptions for soot nanostructure and optical properties for estimation of soot primary particle diameter

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Time-resolved laser-induced incandescence for primary particle size determination is tested using three model carbon blacks. Optical properties change as does the nanostructure upon laser annealing, whereas aggregate morphology and primary particle size remain equivalent to the original material, as shown by transmission electron microscopy (TEM). Primary particle diameters found from fitting experimentally measured time-resolved laser-induced incandescence (LII) signals with existing models do not match the particle diameters as directly visualized by TEM. The accommodation coefficient is shown to be a crucial parameter which can result in substantial variations in simulated conductive cooling profiles for particle sizing. Aggregate structure in the form of intra-aggregate connectivity and shielding is an additional underlying cause for erroneous particle sizing, not presently captured by LII models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

IR:

Infra-red

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

LII:

Laser-induced Incandescence

NIR:

Near infra-red

RDG-FA:

Rayleigh–Debye–Gans approximation for fractal aggregates

TEM:

Transmission electron microscopy

TTH:

Time–temperature history

UV:

Ultraviolet

YAG:

Yttrium aluminum garnet

C :

Heat capacity, J/mol K

d p :

Primary particle diameter, nm

E g :

Optical band gap, eV

E(m) :

Index of refraction function

h :

Planck’s constant, 6.626 × 10−34 m2 kg/s

t :

time, s

T :

Temperature, K

α :

Thermal accommodation coefficient

π :

pi, 3.1415926

ρ :

Density, g/cm3

λ :

Wavelength, nm

Ʌ :

Heat transfer coefficient, W/m2 K

σ abs :

Absorption cross-section

ν :

Frequency of incident radiation, Hz

References

  1. H.A. Michelsen, Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36, 717–735 (2017)

    Article  Google Scholar 

  2. H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

  3. R.L. Vander Wal, M.Y. Choi, Pulsed laser heating of soot: morphological changes. Carbon 37, 231–239 (1999)

    Article  Google Scholar 

  4. R.L. Vander Wal, T.M. Ticich, A. Brock Stephens, Can soot primary particle size be determined using laser-induced incandescence? Combust. Flame 116, 291–296 (1999)

    Article  Google Scholar 

  5. H.A. Michelsen et al., Modeling laser-induced incandescence of soot: enthalpy changes during sublimation, conduction, and oxidation. Appl. Phys. B Lasers Opt. 93, 645–656 (2008)

    Article  ADS  Google Scholar 

  6. T.L. Farias, ÜÖ Köylü, M.G. Carvalho, Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates. Appl. Opt. 35, 6560–6567 (1996)

    Article  ADS  Google Scholar 

  7. H.A. Michelsen et al., Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl. Phys. B 87, 503–521 (2007)

    Article  ADS  Google Scholar 

  8. R.L. Vander Wal, Laser-induced incandescence: excitation and detection conditions, material transformations and calibration. Appl. Phys. B 96, 601–611 (2009)

    Article  ADS  Google Scholar 

  9. X. López-Yglesias, P.E. Schrader, H.A. Michelsen, Soot maturity and absorption cross sections. J. Aerosol Sci. 75, 43–64 (2014)

    Article  ADS  Google Scholar 

  10. H.A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  11. E. Cenker, W.L. Roberts, Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII. Appl. Phys. B 123, 74 (2017)

    Article  ADS  Google Scholar 

  12. F. Goulay, P.E. Schrader, H.A. Michelsen, Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence. Appl. Phys. B 100, 655–663 (2010)

    Article  ADS  Google Scholar 

  13. H.A. Michelsen, P.E. Schrader, F. Goulay, Wavelength and temperature dependences of the absorption and scattering cross sections of soot. Carbon 48, 2175–2191 (2010)

    Article  Google Scholar 

  14. K.C. Smyth, C.R. Shaddix, The elusive history of m = 1.57–0.56i for the refractive index of soot. Combust. Flame 107, 314–320 (1996)

    Article  Google Scholar 

  15. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Optical and microscopy investigations of soot structure alterations by laser-induced incandescence. Appl. Phys. B Lasers Opt. 67, 115 (1998)

    Article  ADS  Google Scholar 

  16. C. Jäger, T. Henning, R. Schlögl, O. Spillecke, Spectral properties of carbon black. J. Non Cryst. Solids 258, 161–179 (1999)

    Article  Google Scholar 

  17. J.P. Abrahamson, Pulsed laser annealing of carbon (The Pennsylvania State University, State College, 2017)

    Google Scholar 

  18. K.A. Thomson, K.P. Geigle, M. Köhler, G.J. Smallwood, D.R. Snelling, Optical properties of pulsed laser heated soot. Appl. Phys. B 104, 307–319 (2011)

    Article  ADS  Google Scholar 

  19. F. Goulay, P.E. Schrader, X. López-Yglesias, H.A. Michelsen, A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature. Appl. Phys. B 112, 287–306 (2013)

    Article  ADS  Google Scholar 

  20. B. Apicella, M. Alfè, R. Barbella, A. Tregrossi, A. Ciajolo, Aromatic structures of carbonaceous materials and soot inferred by spectroscopic analysis. Carbon 42, 1583–1589 (2004)

    Article  Google Scholar 

  21. D.E. Rosner, P. Tandon, Prediction and correlation of accessible area of large multiparticle aggregates. AIChE J. 40, 1167–1182 (1994)

    Article  Google Scholar 

  22. A.V. Filippov, M. Zurita, D.E. Rosner, Fractal-like aggregates: relation between morphology and physical properties. J. Colloid Interface Sci. 229, 261–273 (2000)

    Article  ADS  Google Scholar 

  23. C.M. Sorensen, Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35, 648–687 (2001)

    Article  ADS  Google Scholar 

  24. F. Liu, G.J. Smallwood, D.R. Snelling, Effects of primary particle diameter and aggregate size distribution on the temperature of soot particles heated by pulsed lasers. J. Quant. Spectrosc. Radiat. Transf. 93, 301–312 (2005)

    Article  ADS  Google Scholar 

  25. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int. J. Heat Mass Transf. 49, 777–788 (2006)

    Article  Google Scholar 

  26. R.P. Bambha, H.A. Michelsen, Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J. Aerosol Sci. 88, 159–181 (2015)

    Article  ADS  Google Scholar 

  27. H. Bladh et al., Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence. Proc. Combust. Inst. 35, 1843–1850 (2015)

    Article  Google Scholar 

  28. R. Bambha, M. Dansson, P. Schrader, H. Michelsen, Effects of volatile coatings on the laser-induced incandescence of soot. Appl. Phys. B Lasers Opt. 112, 343–358 (2013)

    Article  ADS  Google Scholar 

  29. S.-A. Kuhlmann, J. Reimann, S. Will, On heat conduction between laser-heated nanoparticles and a surrounding gas. J. Aerosol Sci. 37, 1696–1716 (2006)

    Article  ADS  Google Scholar 

  30. H.A. Michelsen, Derivation of a temperature-dependent accommodation coefficient for use in modeling laser-induced incandescence of soot. Appl. Phys. B 94, 103 (2008)

    Article  ADS  Google Scholar 

  31. F.O. Goodman, Thermal accommodation coefficients. J. Phys. Chem. 84, 1431–1445 (1980)

    Article  Google Scholar 

  32. H. Bladh, J. Johnsson, P.-E. Bengtsson, Influence of spatial laser energy distribution on evaluated soot particle sizes using two-colour laser-induced incandescence in a flat premixed ethylene/air flame. Appl. Phys. B Lasers Opt. 96, 645–656 (2009)

    Article  ADS  Google Scholar 

  33. J.P. Abrahamson, M. Singh, J.P. Mathews, R.L. Vander Wal, Pulsed laser annealing of carbon black. Carbon 124, 380–390 (2017)

    Article  Google Scholar 

  34. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combust. Flame 120, 439–450 (2000)

    Article  Google Scholar 

  35. M. Hofmann, B. Kock, C. Schulz, A web-based interface for modeling laser-induced incandescence (LIISim). in Proc. Eur. Combust. Meet (2007)

  36. B.J. McCoy, C.Y. Cha, Transport phenomena in the rarefied gas transition regime. Chem. Eng. Sci. 29, 381–388 (1974)

    Article  Google Scholar 

  37. N.A. Fuchs, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis. Pura e Appl. 56, 185–193 (1963)

    Article  ADS  Google Scholar 

  38. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII. Appl. Phys. B 83, 383 (2006)

    Article  ADS  Google Scholar 

  39. S. Will, S. Schraml, K. Bader, A. Leipertz, Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Appl. Opt. 37, 5647–5658 (1998)

    Article  ADS  Google Scholar 

  40. R. Mansmann et al., LIISim: a modular signal processing toolbox for laser-induced incandescence measurements. Appl. Phys. B 124, 69 (2018)

    Article  Google Scholar 

  41. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Determination of small soot particles in the presence of large ones from time-resolved laser-induced incandescence. Appl. Phys. B 118, 169–183 (2014)

    Article  ADS  Google Scholar 

  42. H.A. Michelsen et al., Particle formation from pulsed laser irradiation of soot aggregates studied with a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission X-ray microscope. Appl. Opt. 46, 959–977 (2007)

    Article  ADS  Google Scholar 

  43. W.D. Bachalo, S.V. Sankar, G.J. Smallwood, D.R. Snelling, Development of the laser-induced incandescence method for the reliable characterization of particulate emissions. in Proc. 11th Int. Symp. Appl. Laser Tech. to Fluid Mech. (2002)

  44. J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Influence of soot aggregate structure on particle sizing using laser-induced incandescence: importance of bridging between primary particles. Appl. Phys. B Lasers Opt. 112, 321–332 (2013)

    Article  ADS  Google Scholar 

  45. H. Bladh et al., Influence of soot particle aggregation on time-resolved laser-induced incandescence signals. Appl. Phys. B 104, 331–341 (2011)

    Article  ADS  Google Scholar 

  46. M. Schnaiter et al., UV–Vis–NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 34, 1421–1444 (2003)

    Article  ADS  Google Scholar 

  47. S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Experimental study of the E(m, λ)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature. Appl. Phys. B 116, 313–323 (2014)

    Article  ADS  Google Scholar 

  48. U.O. Köylü, G.M. Faeth, Radiative properties of flame-generated soot. J. Heat Transf. 115, 409–417 (1993)

    Article  Google Scholar 

  49. G. Cléon, T. Amodeo, A. Faccinetto, P. Desgroux, Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame. Appl. Phys. B Lasers Opt. 104, 297–305 (2011)

    Article  ADS  Google Scholar 

  50. J. Simonsson, N.-E. Olofsson, S. Török, P.-E. Bengtsson, H. Bladh, Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes. Appl. Phys. B Lasers Opt. 119, 657–667 (2015)

    Article  Google Scholar 

  51. P. Minutolo, G. Gambi, A. D’Alessio, The optical band gap model in the interpretation of the UV-visible absorption spectra of rich premixed flames. in Twenty-Sixth International Symposium on Combustion, vols. 1 and 2 (Combustion Institute, 1996), pp. 951–957

  52. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)

    Article  Google Scholar 

  53. J.H. Miller, J.D. Herdman, C.D.O. Green, E.M. Webster, Experimental and computational determinations of optical band gaps for PAH and soot in a N2-diluted, ethylene/air non-premixed flame. Proc. Combust. Inst. 34, 3669–3675 (2013)

    Article  Google Scholar 

  54. E.M. Adkins, J.H. Miller, Extinction measurements for optical band gap determination of soot in a series of nitrogen-diluted ethylene/air non-premixed flames. Phys. Chem. Chem. Phys. 17, 2686–2695 (2015)

    Article  Google Scholar 

  55. J. Robertson, E.P. O’Reilly, Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, 2946–2957 (1987)

    Article  ADS  Google Scholar 

  56. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Science Publishers, Amsterdam, 1996)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the National Science Foundation (NSF), Chemical, Bioengineering, Environmental, and Transport Systems (CBET), under Grant number 1236757. TEM was performed using the facilities of the Materials Research Institute at The Pennsylvania State University. Guidance and support on using LIISim and LIISim 3.0 provided by Raphael Mansmann is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy L. Vander Wal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17847 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Abrahamson, J.P. & Vander Wal, R.L. Informing TiRe-LII assumptions for soot nanostructure and optical properties for estimation of soot primary particle diameter. Appl. Phys. B 124, 130 (2018). https://doi.org/10.1007/s00340-018-6994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6994-x

Navigation