Skip to main content

Laser Diagnostics for Temperature and Species in Unsteady Combustion

  • Chapter
Unsteady Combustion

Part of the book series: NATO ASI Series ((NSSE,volume 306))

Abstract

Nonintrusive laser probing of unsteady combustion processes provides the capability for the remote, in—situ, spatially and temporally precise measurement of, among other parameters, gas temperature and species concentrations. The predominant spatially—precise laser diagnostics for temperature and species include spontaneous Raman scattering (RS) and coherent anti-Stokes Raman spectroscopy (CARS) for measurements of major, i.e., ≥~ 1%, constituents, and laser—induced fluorescence spectroscopy (LIFS) and degenerate four wave mixing (DFWM) for minor, ppm level, species. Rayleigh scattering can provide total density measurements. These techniques are reviewed, including two-dimensional implementations, their state of maturity assessed, and major remaining research issues identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, R. L., Lam, J. F., Lind, R. C. and Steel, D. G. (1983), “Phase Conjugation and High Resolution Spectroscopy by Resonant Degenerate Four Wave Mixing,” 211–284 in R. A. Fisher (Ed.), Optical Phase Conjugation, Academic Press, New York, NY.

    Google Scholar 

  • Anderson, T. J. and Dabora, E. K. (1992), “Measurements of Normal Detonation Wave Structure Using Rayleigh Imaging,” 1853–1860 in Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.

    Google Scholar 

  • Anderson, T. J., Dobbs, G. M. and Eckbreth, A. C. (1986), “Mobile CARS Instrument for Combustion and Plasma Diagnostics,” Appl. Opt. 25,4076–4085.

    Article  Google Scholar 

  • Andresen, P., Bath, A., Gröger, W, Lülf, H. W, Meijer, G. and ter Meulen, J. J. (1988), “Laser-induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Appl. Opt. 27, 365–378.

    Article  Google Scholar 

  • Barlow, R. S., Dibble, R. W. and Lucht, R. P. (1989), “Simultaneous Measurement of Raman Scattering and Laser-induced OH Fluorescence in Nonpremixed Turbulent Jet Flames,” Opt. Lett. 14, 263–265.

    Article  Google Scholar 

  • Bergano, N. S., Jaanimagi, P. A., Salour, M. M. and Bechtel, J. H. (1983), “Picosecond Laser Spectroscopy Measurement of Hydroxyl Fluorescence Lifetime in Flames,” Opt. Lett. 8, 443–445.

    Article  Google Scholar 

  • Carter, C. D., Salmon, J. T., King, G. B. and Laurendeau, N. M. (1987), “Feasibility of Hydroxyl Concentration Measurements by Laser-Saturated Fluorescence in High-Pressure Flames,” Appl. Opt. 26, 4551–4562.

    Article  Google Scholar 

  • Cattolica, R. (1981), “OH Rotational Temperature from Two-Line Laser-Excited Fluorescence,” Appl. Opt. 20, 1156–1166.

    Article  Google Scholar 

  • Crosley, D. R. and Smith, G. P. (1983), “Laser-induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Eng. 22, 545–553.

    Google Scholar 

  • Dibble, R. W. and Hollenbach, R. E. (1981), “Laser Rayleigh Thermometry in Turbulent Flames,” 1489–1499 in Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.

    Google Scholar 

  • Dibble, R. W., Kollmann, W. and Schefer, R. W. (1984), “Conserved Scalar Fluxes Measured in Turbulent Nonpremixed Flames by Combined Laser Doppler Velocimetry and Laser Raman Scattering,” Combust Flame 55, 307–321.

    Article  Google Scholar 

  • Drake, M. C., Lapp, M., Penney, C. M., Warshaw, S. and Gerhold, B. W. (1981), “Measurement of Temperature and Concentration Fluctuations in Turbulent Diffusion Flames Using Pulsed Spontaneous Raman Spectroscopy,” 1521–1531 in Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.

    Google Scholar 

  • Dreier, T. and Rakestraw, D. J. (1990), “Degenerate Four-Wave Mixing Diagnostics on OH and NH Radicals in Flames,” App. Phys. B 50, 479–485.

    Article  Google Scholar 

  • Druet, S., Attal, B., Gustafson, T. K. and Taran, J. P. E. (1978), “Electronic Resonance Enhancement of Coherent Anti-Stokes Raman Scattering,” Phys. Rev. A18, 1529–1577.

    Google Scholar 

  • Druet, S. A. J. and Taran, J. P. E. (1981), “CARS Spectroscopy,” Prog. Quant. Elec. 7, 1–72.

    Article  Google Scholar 

  • Eckbreth, A. C. (1988), Laser Diagnostics for Combustion Temperature and Species, Abacus Press (now Gordon and Breach), Turnbridge Wells, Kent, UK.

    Google Scholar 

  • Eckbreth, A. C. (1989), “Laser Diagnostics for Gas Turbine Thermometry and Species Measurements,” 69–106 in D.F.G. Durao, J. H. Whitelaw and P. O. Witze (Eds.), Instrumentation for Combustion and How in Engines, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Eckbreth, A. C. and Anderson, T. J. (1987), “Multi-Color CARS for Simultaneous Measurements of Multiple Combustion Species,” SPIE 742, 34–41.

    Google Scholar 

  • Ewart, P. and O’Leary, S. V. (1986), “Detection of OH in a Flame by Degenerate Four-Wave Mixing,” Opt. Lett. 11, 279–281.

    Article  Google Scholar 

  • Ewart, P. and Snowdon, P. (1990), “Multiplex Degenerate Four-Wave Mixing in a Flame,” Opt. Lett. 15, 1403–1405.

    Article  Google Scholar 

  • Ewart, P., Snowdon, P. and Magnusson, I. (1989), “Two-Dimensional Phase-Conjugate Imaging of Atomic Distributions in Flames by Degenerate Four-Wave Mixing,” Opt Lett. 14, 563–565.

    Article  Google Scholar 

  • Farrow, R. L. and Rakestraw, D. J. (1992), “Detection of Trace Molecular Species Using Degenerate Four-Wave Mixing,” Science 257, 1894–1900.

    Article  Google Scholar 

  • Feikema, D. A., Domingues, E. and Cottereau, M.-J. (1992), “OH Rotational Temperature and Number Density Measurements in High Pressure Laminar Flames Using Double Phase-Conjugate Four Wave Mixing,” Appl. Phys. B 55, 424–429.

    Article  Google Scholar 

  • Greenhalgh, D. A. (1988), “Quantitative CARS Spectroscopy,” 193–251 in R. J. H. Clarke and R. E. Hester (Eds.), Advances in Nonlinear Spectroscopy, J. Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Hanson, R. K. (1987), “Combustion Diagnostics: Planar Imaging Techniques,” 1677–1691 in Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.

    Google Scholar 

  • Hanson, R. K., Seitzman, J. M. and Paul, P. H. (1990), “Planar Laser Fluorescence Imaging of Combustion Gases,” Appl. Phys. B 50, 441–454.

    Article  Google Scholar 

  • Heinze, T., Schmidt, T., Brüggemann, D. and Knoche, K.-F. (1992), “Mixture Formation in a Spray Observed by Spontaneous Raman Spectroscopy,” 469–480 in Durao, D.F.G. et al. (Eds.), Combusting Flow Diagnostics, Kluwer Academic, Netherlands.

    Google Scholar 

  • Kohse-Höinghaus, K. (1990), “Quantitative Laser-Induced Fluorescence: Some Recent Developments in Combustion Diagnostics,” Appl. Phys. B 50, 455–461.

    Article  Google Scholar 

  • Long, D. A. (1977), Raman Spectroscopy, McGraw-Hill, New York, NY.

    Google Scholar 

  • Lucht, R. P., Laurendeau, N. M. and Sweeney, D. W. (1982), “Temperature Measurements by Two-Line Laser-Saturated OH Fluorescence in Flames,” Appl. Opt. 21, 3729–3735.

    Article  Google Scholar 

  • Pender, J. and Hesselink, L. (1985), “Phase Conjugation in a Flame,” Opt. Lett. 10, 264–266.

    Article  Google Scholar 

  • Rakestraw, D. J. (1992). Private communication.

    Google Scholar 

  • Rakestraw, D. J., Farrow, R. L. and Dreier, T. (1990), “Two-Dimensional Imaging of OH in Flames by Degenerate Four-Wave Mixing,” Opt. Lett. 15, 709–711.

    Article  Google Scholar 

  • Reckers, W., Hüwel, L., Grünefeld, G. and Andresen, P. (1993), “Spatially Resolved Multi-species and Temperature Analysis in Hydrogen Flames,” Appl. Opt. 32, 907–918.

    Article  Google Scholar 

  • Reisel, J. R., Carter, C. D., Laurendeau, N. M. and Drake, M. C. (1993), “Laser Saturated Fluorescence Measurements of Nitric Oxide in Laminar Flat, C2H6/O2/N2 Flames at Atmospheric Pressure,” Combust. Sci. and Tech. 91, 271–295.

    Article  Google Scholar 

  • Schäfer, M., Dinkelacker, F., Buschmann, A. and Wolfrum, J. (1993), “Simultaneous Multidimensional Temperature and OH Concentration Field Measurements in Highly Turbulent Premixed Flames,” Zeit Phys. Chem., in press.

    Google Scholar 

  • Shen, Y. R. (1984), The Principles of Nonlinear Optics, Wiley, New York, NY.

    Google Scholar 

  • Shirley, J. A. (1990), “UV Raman Spectroscopy of H2-Air Flames Excited with a Narrowband KrF Laser,” Appl. Phys. B 51, 45–48.

    Article  Google Scholar 

  • Shirley, J. A. (1992), “UV Laser Spectroscopic Measurements in Jet Engine Combustion Exit Flows,” AIAA Paper 92–0513.

    Google Scholar 

  • Stufflebeam, J. H. (1991), “CARS Diagnostics of Reaction Pathways for Nitramine Combustion,” AIAA Paper 91–2318.

    Google Scholar 

  • Taylor, A. M. K. P. (1993), Instrumentation for Flows with Combustion, Academic Press, London, UK.

    Google Scholar 

  • Vander Wal, R. L., Holmes, B. E., Jeffries, J. B., Danehy, P. M., Farrow, R. L. and Rakestraw, D. J. (1992), “Detection of HF Using Infrared Degenerate Four-Wave Mixing,” Chem. Phys. Lett. 191, 251–258.

    Article  Google Scholar 

  • Wehrmeyer, J. A., Cheng, T.-S. and Pitz, R. W. (1992), “Raman Scattering Measurements in Flames Using a Tunable KrF Excimer Laser,” Appl. Opt. 31, 1495–1504.

    Article  Google Scholar 

  • Williams, S., Green, D. S., Sethuraman, S. and Zare, R. N. (1992), “Detection of Trace Species in Hostile Environments Using Degenerate Four Wave Mixing: CH in an Atmospheric Pressure Flame,” J. Am. Chem. Soc. 114, 9122–9130.

    Article  Google Scholar 

  • Winter, M. and Radi, P. P. (1992), “Nearly Degenerate Four-Wave Mixing Using Phase-Conjugate Pump Beams,” Opt. Lett. 17, 30–322.

    Article  Google Scholar 

  • Wolfrum, J. (1992), Laser Diagnostics in Combustion: Elementary Processes and Complex Systems, World Scientific Publishing Co., Singapore.

    Google Scholar 

  • Yip, B., Danehy, P. M. and Hanson, R. K. (1992), “Degenerate Four-Wave Mixing Temperature Measurements in a Flame,” Opt. Lett. 17, 751–753.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Eckbreth, A.C. (1996). Laser Diagnostics for Temperature and Species in Unsteady Combustion. In: Culick, F., Heitor, M.V., Whitelaw, J.H. (eds) Unsteady Combustion. NATO ASI Series, vol 306. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1620-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1620-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7223-6

  • Online ISBN: 978-94-009-1620-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics