Skip to main content
Log in

Influence of soot particle aggregation on time-resolved laser-induced incandescence signals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced incandescence (LII) is a versatile technique for quantitative soot measurements in flames and exhausts. When used for particle sizing, the time-resolved signals are analysed as these will show a decay rate dependent on the soot particle size. Such an analysis has traditionally been based on the assumption of isolated primary particles. However, soot particles in flames and exhausts are usually aggregated, which implies loss of surface area, less heat conduction and hence errors in estimated particle sizes. In this work we present an experimental investigation aiming to quantify this effect. A soot generator, based on a propane diffusion flame, was used to produce a stable soot stream and the soot was characterised by transmission electron microscopy (TEM), a scanning mobility particle sizer (SMPS) and an aerosol particle mass analyzer coupled in series after a differential mobility analyzer (DMA-APM). Despite nearly identical primary particle size distributions for three selected operating conditions, LII measurements resulted in signal decays with significant differences in decay rate. However, the three cases were found to have quite different levels of aggregation as shown both in TEM images and mobility size distributions, and the results agree qualitatively with the expected effect of diminished heat conduction from aggregated particles resulting in longer LII signal decays. In an attempt to explain the differences quantitatively, the LII signal dependence on aggregation was modelled using a heat and mass transfer model for LII given the primary particle and aggregate size distribution data as input. Quantitative agreement was not reached and reasons for this discrepancy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics (Taylor and Francis, New York, 2002), p. 252

    Google Scholar 

  2. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  3. P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995)

    Article  ADS  Google Scholar 

  4. S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44, 7414 (2005)

    Article  ADS  Google Scholar 

  5. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  6. D.R. Snelling, F.S. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  7. S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)

    Article  ADS  Google Scholar 

  8. Z.H. Lim, A. Lee, K.Y.Y. Lim, Z. Yanwu, S. Chorng-Haur, J. Appl. Phys. 107, 064319 (2010), 7 pp.

    Article  ADS  Google Scholar 

  9. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)

    Article  Google Scholar 

  10. R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)

    Article  ADS  Google Scholar 

  11. J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. Black, I. Vallet, Appl. Phys. B 95, 825 (2009)

    Article  ADS  Google Scholar 

  12. J.D. Black, M.P. Johnson, Aerosp. Sci. Technol. 14, 329 (2010)

    Article  Google Scholar 

  13. H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 90, 109 (2008)

    Article  ADS  Google Scholar 

  14. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  15. R.W. Weeks, W.W. Duley, J. Appl. Phys. 45, 4661 (1974)

    Article  ADS  Google Scholar 

  16. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  17. F. Goulay, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Proc. Combust. Inst. 32, 963 (2009)

    Article  Google Scholar 

  18. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  19. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  20. A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interface Sci. 229, 261 (2000)

    Article  Google Scholar 

  21. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006)

    Article  ADS  Google Scholar 

  22. F. Liu, G.J. Smallwood, in 40th Thermophysics Conference (Seattle, Washington, 2008)

    Google Scholar 

  23. Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621 (1995)

    Article  Google Scholar 

  24. S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006)

    Article  Google Scholar 

  25. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  MATH  Google Scholar 

  26. K.J. Daun, G.J. Smallwood, F. Liu, J. Heat Transf. 130, 121201 (2008), 9 pp.

    Article  Google Scholar 

  27. H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 96, 645 (2009)

    Article  ADS  Google Scholar 

  28. E.O. Knutson, K.T. Whitby, J. Aerosol. Sci. 6, 443 (1975)

    Article  Google Scholar 

  29. K. Park, D. Dutcher, M. Emery, J. Pagels, H. Sakurai, J. Scheckman, S. Qian, M.R. Stolzenburg, X. Wang, J. Yang, P.H. McMurry, Aerosol Sci. Technol. 42, 801 (2008)

    Article  Google Scholar 

  30. K. Park, F. Cao, D.B. Kittelson, P.H. McMurry, Environ. Sci. Technol. 37, 577 (2003)

    Article  Google Scholar 

  31. J. Pagels, A.F. Khalizov, P.H. McMurry, R.Y. Zhang, Aerosol Sci. Technol. 43, 629 (2009)

    Article  Google Scholar 

  32. K. Park, D.B. Kittelson, M.R. Zachariah, P.H. McMurry, J. Nanopart. Res. 6, 267 (2004)

    Article  Google Scholar 

  33. A. Malik, H. Abdulhamid, J. Pagels, J. Rissler, M. Lindskog, R. Bjorklund, P. Jozsa, J. Visser, A. Spetz, M. Sanati, Aerosol Sci. Technol. 45, 1 (2011)

    Article  Google Scholar 

  34. CAST, Combustion Aerosol Standard (Jing Ltd., Im Park 4, CH-3052 Zollikofen BE, Switzerland). http://www.sootgenerator.com. Available September 2010

  35. W.S. Rasband, ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA, 2007). http://rsb.info.nih.gov/ij/. Available September 2010

  36. K. Tian, F.S. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 138, 195 (2004)

    Article  Google Scholar 

  37. F. Liu, G.J. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 111, 302 (2010)

    Article  ADS  Google Scholar 

  38. H. Bladh, J. Johnsson, N.E. Olofsson, A. Bohlin, P.E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bladh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bladh, H., Johnsson, J., Rissler, J. et al. Influence of soot particle aggregation on time-resolved laser-induced incandescence signals. Appl. Phys. B 104, 331–341 (2011). https://doi.org/10.1007/s00340-011-4470-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4470-y

Keywords

Navigation