Skip to main content
Log in

Study of hemoglobin response to mid-ultraviolet (UVB) radiation using micro-Raman spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Confocal micro-Raman spectroscopy is employed to monitor the damage to haemoglobin from mid-ultraviolet (UVB) radiation. We obtained the Raman spectra of an erythrocyte, which indicated that a peroxidation reaction occurs after UVB radiation. Further, the surface enhanced Raman scattering (SERS) spectra of isolated haemoglobin show that the intensities of the 1375 and 1399 cm−1 bands, which are markers of haem aggregation, obviously increase with prolonged UVB irradiation. This increase reveals that haem aggregation occurs in the peroxidation of erythrocytes. The UV–Vis spectra of isolated haemoglobin indicate that the Soret band, which is indicative of excitonic interactions in the aggregated haems, has a redshift (~12 nm) after 30 min of UVB irradiation of erythrocytes. It can be deduced that an excitonic interaction occurs in the aggregated haems, which is caused by haemoglobin denaturation following UVB irradiation. In addition, the changes of the Raman marker bands during aggregation primarily originate from excitonic interactions. Throughout the process, a higher UVB radiation dose causes greater damage to haemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.R. Svobodová, A. Galandáková, J. Šianská, D. Doležal, J. Ulrichová, J. Vostálová, Acute exposure to solar simulated ultraviolet radiation affects oxidative stress-related biomarkers in skin, liver and blood of hairless mice. Biol. Pharm. Bull. 34(4), 471–479 (2011)

    Article  Google Scholar 

  2. E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, D. Mathur, Probing oxidative stress in single erythrocytes with Raman Tweezers. J. Phtotchem. Photobiol. B. 100(3), 113–116 (2010)

    Article  Google Scholar 

  3. P. Chen, Q. Tian, S.J. Baek, X.L. Shang, A. Park, Z.C. Liu, X.Q. Yao, J.Z. Wang, X.H. Wang, Y. Cheng, J. Peng, A.G. Shen, J.M. Hu, Laser Raman detection of platelet as a non-invasive approach for early and differential diagnosis of Alzheimer’s disease. Laser Phys. Lett. 8(7), 547–552 (2011)

    Article  ADS  Google Scholar 

  4. C.W. Spellman, J.G. Woodward, R.A. Daynes, RA: Modification of immunological potential by ultraviolet radiation. I. Immune status of short-term UV-irradiated mice. Transplantation 24, 112–119 (1977)

    Article  Google Scholar 

  5. M. Mulero, E. Rodríguez-Yanes, M.R. Nogués, M. Giralt, M. Romeu, S. González, J. Mallol, Polypodium leucotomos extract inhibits glutathione oxidation and prevents Langerhans cell depletion induced by UVB/UVA radiation in a hairless rat model. Exp. Dermatol. 17(8), 653–658 (2008)

    Article  Google Scholar 

  6. Y. Wu, Y.X. Huang, L.L. Kang, Z.J. Wu, L. Man, Effect of pH on molecular constitution and distribution of hemoglobin in living erythrocyte. Biopolymers 93(4), 348–354 (2009)

    Google Scholar 

  7. S. Zhuo, J. Chen, S. Xie, L. Fan, L. Zheng, X. Zhu, X. Jiang, Monitoring dermal wound healing after mesenchymal stem cell transplantation using nonlinear optical microscopy. Tissue Eng. C. 16(5), 1107–1110 (2010)

    Article  Google Scholar 

  8. S. Zhuo, J. Chen, G. Wu, S. Xie, L. Zheng, X. Jiang, X. Zhu, Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy. Appl. Phys. Lett. 96(21), 213704 (2010)

    Article  ADS  Google Scholar 

  9. Z.F. Zhuang, H.P. Liu, Z.Y. Guo, S.M. Zhuo, B.Y. Yu, X.Y. Deng, Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells. Chin. Phys. B 19(4), 049501 (2010)

    Article  ADS  Google Scholar 

  10. J. Lademann, P.J. Caspers, A. Van Der Pol, H. Richter, A. Patzelt, L. Zastrow, M. Darvin, W. Sterry, J.W. Fluhr, In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids. Laser Phys. Lett. 6(1), 76–79 (2009)

    Article  ADS  Google Scholar 

  11. T.G. Spiro, T.C. Streakas, Resonance Raman spectra of heme proteins. Effects of oxidation and spin state. J. Am. Chem. Soc. 96(2), 338–345 (1974)

    Article  Google Scholar 

  12. H. Brunner, A. Mayer, H. Sussner, Resonance Raman scattering on the haem group of oxy- and deoxyhaemoglobin. J. Mol. Biol. 70, 153–156 (1972)

    Article  Google Scholar 

  13. B.R. Wood, L. Hammer, L. Davis, D. McNaughton, Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes. J. Biomed. Opt. 10(1), 014005 (2005)

    Article  ADS  Google Scholar 

  14. B.R. Wood, L. Hammer, D. McNaughton, Resonance Raman spectroscopy of erythrocytes. Vib. Spectrosc. 38, 71–78 (2005)

    Article  Google Scholar 

  15. W.Z. Yin, Z.Y. Guo, Z.F. Zhuanga, S.H. Liu, K. Xiong, S.J. Chen, Application of surface_enhanced Raman in skin cancer by Plasma1. Laser Phys. 22(5), 996–1001 (2012)

    Article  ADS  Google Scholar 

  16. H.X. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83(21), 4357–4360 (1999)

    Article  ADS  Google Scholar 

  17. N.A. Brazhe, A.R. Brazhe, O.V. Sosnovtseva, S. Abdali, Novel chiroptical analysis of hemoglobin by surface enhanced resonance Raman optical activity spectroscopy. Chirality 21(1E), E307–312 (2009)

    Article  Google Scholar 

  18. Y.F. Liao, W.Y. Wang, L. Zhang, L.S. Yang, Distribution of biologically effective solar ultraviolet radiation intensity on the ground in China. Geogr. Res. 26(4), 821–827 (2007)

    Google Scholar 

  19. L.N. Luo, X.P. Yang, H.Y. Zhang, Q.H. Li, H.Y. He, Discussion about ultraviolet and forecast method of its radiation intensity. Shanxi Meteorol. Q. 3(9), 12–14 (2001)

    Google Scholar 

  20. W. Ren, Y. Fang, E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene Oxide/Ag nanoparticle hybrids. ACS Nano 5(8), 6425–6433 (2011)

    Article  Google Scholar 

  21. B.R. Wood, B. Tait, D. McNaughton, Micro-Raman characterization of the R to T state transition of haemoglobin within a single living erythrocyte. Biochem. Biophys. Acta 1539, 58–70 (2001)

    Article  Google Scholar 

  22. Z. Zhuang, M. Zhu, Z. Guo, K. Xiong, N. Li, S. Chen, Study of molecule variation in various stages of human nuclear cataracts by micro-Raman Spectroscopy. Appl. Phys. Lett. 101(17), 173701 (2012)

    Article  ADS  Google Scholar 

  23. B.R. Wood, D. McNaughton, Raman excitation wavelength investigation of single red blood cells in vivo. J. Raman Spectrosc. 33(7), 517–523 (2002)

    Article  ADS  Google Scholar 

  24. B.R. Wood, P. Caspers, G.J. Puppels, S. Pandiancherri, D. McNaughton, Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal. Bioanal. Chem. 387(5), 1691–1703 (2007)

    Article  Google Scholar 

  25. Y.H. Kim, D.H. Jeong, D. Kim, S.C. Jeoung, H.S. Cho, S.K. Kim, N. Aratani, A. Osuka, ‘Photophysical properties of long rodlike meso-meso-linked Zinc (II) porphyrins investigated by time-resolved laser spectroscopic methods. J. Am. Chem. Soc. 123(1), 76–86 (2001)

    Article  Google Scholar 

  26. A.A. Bhuiyan, J. Seth, N. Yoshida, A. Osuka, D.F. Bocian, ‘Resonance Raman characterisation of excitonically coupled meso, meso-linked porphyrin arrays. J. Phys. Chem. B 104(46), 10757–10764 (2000)

    Article  Google Scholar 

  27. M. Casella, A. Lucotti, M. Tommasini, M. Bedoni, E. Forvi, F. Gramatica, G. Zerbibi, Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood. Spectrochim. Acta Part A. 79(5), 915–919 (2011)

    Article  ADS  Google Scholar 

  28. T.G. Spiro, Iron Porphyrins (Addison-Wesley, London, 1983)

    Google Scholar 

  29. D.L. Akins, ‘Theory of Raman scattering by aggregated molecules’. J. Phys. Chem. 90(8), 1530–1534 (1986)

    Article  Google Scholar 

  30. D.L. Akins, J.W. Macklin, Dependence of Raman scattering by aggregated 2,2-cyanine on pH and excitation wavelength’. J. Phys. Chem. 93(16), 5999–6007 (1989)

    Article  Google Scholar 

  31. J.J. Weiss, Nature of the iron-oxygen bond in oxyhaemoglobin. Nature 202(11), 83–84 (1964)

    Article  ADS  Google Scholar 

  32. C. Balagopalakrishna, O.O. Abugo, P.T. Manoharan, J. Horsky, P.T. Manoharan, E. Nagababu, J.M. Rifkind, Superoxide produced in the heme pocket of the β-chain of hemoglobin reacts with the β-93 cysteine to produce a thiyl radical. Biochemistry 37(38), 13194–13202 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 11404116, 61335011, 61275187) and the Young Teachers Nurturing Fund of South China Normal University (2012KJ020) and the Horizontal Topic Research Project of SENSING.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. F. Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y.Y., Li, N., Zhou, S.N. et al. Study of hemoglobin response to mid-ultraviolet (UVB) radiation using micro-Raman spectroscopy. Appl. Phys. B 123, 237 (2017). https://doi.org/10.1007/s00340-017-6800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6800-1

Navigation