Skip to main content
Log in

Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Resonance Raman spectra of oxygenated and deoxygenated functional erythrocytes recorded using 785 nm laser excitation are presented. The high-quality spectra show a mixture of enhanced A1g, A2g, B1g, B2g, Eu and vinyl modes. The high sensitivity of the Raman system enabled spectra from four oxygenation and deoxygenation cycles to be recorded with only 18 mW of power at the sample over a 60-minute period. This low power prevented photo-/thermal degradation and negated protein denaturation leading to heme aggregation. The large database consisting of 210 spectra from the four cycles was analyzed with principal components analysis (PCA). The PC1 loadings plot provided exquisite detail on bands associated with the oxygenated and deoxygenated states. The enhancement of a band at 567 cm−1, observed in the spectra of oxygenated cells and the corresponding PC1 loadings plot, was assigned to the Fe–O2 stretching mode, while a band appearing at 419 cm−1 was assigned to the Fe–O–O bending mode based on previous studies. For deoxygenated cells, the enhancement of B1g modes at 785 nm excitation is consistent with vibronic coupling between band III and the Soret transition. In the case of oxygenated cells, the enhancement of iron-axial out-of-plane modes and non-totally symmetric modes is consistent with enhancement into the y,z-polarized transition \({\text{a}}_{{{\text{iu}}}} {\left( {\text{ $ \pi $ }} \right)} \to {\text{d}}_{{{\text{xz}}}} + {\text{O}}_{{\text{2}}} {\left( {{\text{ $ \pi $ }}_{{\text{g}}} } \right)}\) centered at 785 nm. The enhancement of non-totally symmetric B1g modes in oxygenated cells suggests vibronic coupling between band IV and the Soret band. This study provides new insights into the vibrational dynamics, electronic structure and resonant enhancement of heme moieties within functional erythrocytes at near-IR excitation wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–b
Fig. 6
Fig. 7
Fig. 8a–c
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PCA:

principal components analysis

PC:

principal component

RERS:

resonance-enhanced Raman scattering

Hb:

hemoglobin

RBCs:

red blood cells

r.p.m:

revolutions per minute

CCD:

charged coupled device

NIR:

near-infrared

HPRM:

high-performance Raman module

References

  1. Spiro TG (ed) (1988) Biological applications of Raman spectroscopy. Wiley, New York

  2. Puppels GJ, Olminkhof JHF, Segers-Nolten GMJ, Otto C, Mul de FFM, Greve J (1991) Exp Cell Res 195:361–367

    Article  CAS  Google Scholar 

  3. Puppels GJ, Garritsen GMJ, Kummer JA, Greve J (1993) Cytometry 14:251–256

    Article  CAS  Google Scholar 

  4. Van Manen H-J, Kraan YM, Roos D, Otto C (2004) J Phys Chem B 108:18762–18771

    Article  CAS  Google Scholar 

  5. Puppels GJ, Garritsen GMJ, Segers-Nolten GMJ, De Mul FFM, Greve J (1991) Biophys J 60:436–446

    Article  Google Scholar 

  6. Salmaso BLN, Puppels GJ, Caspers PJ, Floris R, Greve J (1994) Biophys J 67:36–446

    Google Scholar 

  7. Otto C, Sijisema NM, Greve J (1998) Eur Biophys J 271:582–589

    Article  Google Scholar 

  8. Wood BR, Hammer L, Davis L, McNaughton D (2004) J Biomed Opt 10:14005

    Article  CAS  Google Scholar 

  9. Wood BR, Hammer L, McNaughton D (2005) Vib Spectrosc 78:71–78

    Google Scholar 

  10. Wood BR, Langford S, Cooke BM, Glenister FK, Lim J, Duriska M, McNaughton D (2003) FEBS Lett 554:247–252

    Article  CAS  Google Scholar 

  11. Wood BR, McNaughton D (2002) Biopolymers (Biospectroscopy) 67:259–262

    Article  CAS  Google Scholar 

  12. Wood BR, McNaughton D (2002) J Raman Spectrosc 33:517–523

    Article  CAS  Google Scholar 

  13. Wood BR, Tait B, McNaughton D (2001) Biochim Biophys Acta 1539:58–70

    Article  CAS  Google Scholar 

  14. McNaughton D, Lim J, Langford S, Collie J, Wood BR (2005) Proc SPIE 5651:52–60

    Article  CAS  Google Scholar 

  15. Wood BR, McNaughton D (2006) In: O’Malley PD (ed) New developments in sickle cell disease. Nova, New York, pp 63–119

  16. Yan X-l, Dong R-X, Wang Q-G (2004) Spectrosc Spect Anal 24:576–578

    CAS  Google Scholar 

  17. Hoey S, Brown DH, McConnell AA, Smith WE, Marabani M, Sturrock RD (1988) J Inorg Biochem 34:189–199

    Article  CAS  Google Scholar 

  18. Brunner H, Mayer A, Sussner H (1972) J Mol Biol 70:153–156

    Article  CAS  Google Scholar 

  19. Spiro TG, Streakas TC (1973) J Am Chem Soc 96:338–345

    Article  Google Scholar 

  20. Spiro TG (1975) Biochim Biophys Acta 416:169–189

    CAS  Google Scholar 

  21. Yamamoto T, Palmer G (1973) J Biol Chem 248:5211–5213

    CAS  Google Scholar 

  22. Brunner H (1974) Naturwissenschaften 61:129–130

    Article  CAS  Google Scholar 

  23. Jeyarajah S, Proniewicz LM, Bronder H, Kincaid JR (1994) J Biol Chem 269:31047–31050

    CAS  Google Scholar 

  24. Hu S, Kincaid JR (1991) J Am Chem Soc 113:7189–7194

    Article  CAS  Google Scholar 

  25. Abe M, KitagawaT, Kyogoku K (1978) J Chem Phys 69:4526–4534

    Article  CAS  Google Scholar 

  26. Hu S, Smith KM, Spiro TG (1996) J Am Chem Soc 118:12638–12646

    Article  CAS  Google Scholar 

  27. Choi S, Spiro TG, Langry KC, Smith KM (1982) J Am Chem Soc 104:4337

    Google Scholar 

  28. Franzen S, Wallace-Williams SE, Shreve AP (2001) J Am Chem Soc 124:7146–7155

    Article  CAS  Google Scholar 

  29. Eaton WA, Hanson LK, Stephens PJ, Sutherland JC, Dunn JBR (1978) J Am Chem Soc 100:4991–5003

    Article  CAS  Google Scholar 

  30. Srajer V, Champion PM (1991) Biochemistry 30:7390–7402

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is funded by an Australian Research Council Discovery Grant. Dr. Wood′s work is supported by an Australian Synchrotron Program Fellowship Grant and a Monash University Synchrotron Fellowship Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayden R. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, B.R., Caspers, P., Puppels, G.J. et al. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal Bioanal Chem 387, 1691–1703 (2007). https://doi.org/10.1007/s00216-006-0881-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0881-8

Keywords

Navigation