Skip to main content

Ultraviolet (UV) Raman Spectroscopy

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Part of the book series: Springer Handbooks ((SHB))

  • 2722 Accesses

Abstract

Using an ultraviolet laser to excite Raman scattering has the benefit of avoiding fluorescence interference and increasing Raman intensity via resonance enhancement. The high photon energy inherent at ultraviolet wavelengths requires special precautions for sample handling to minimize transformations caused by laser-induced heating and photochemistry. This chapter begins by covering the basic theory of resonance-enhanced Raman spectroscopy and the instrumentation for making measurements with a special focus on sample handling and in situ reaction cells. The remainder of the chapter summarizes studies of catalyst synthesis, catalyst deactivation by coke formation, and catalytic metal oxide speciation. The identification and appearance of resonance-enhanced Raman scattering and how it can be exploited are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angell, C.L.: Raman spectroscopic investigation of zeolites and adsorbed molecules. J. Phys. Chem. 77, 222–227 (1973)

    CAS  Google Scholar 

  2. Asher, S.A., Johnson, C.R.: Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. Science (Washington, D. C., 1883-). 225, 311–313 (1984)

    CAS  Google Scholar 

  3. Careri, G., Signorel, G., Sampoli, M., Mazzacur, V.: Raman scattering from water adsorbed on oxide surfaces. J. Catal. 26, 494-& (1972)

    Google Scholar 

  4. Jeziorowski, H., Knoezinger, H.: Scattering background in laser Raman spectra of oxide surfaces. Chem. Phys. Lett. 42, 162–165 (1976)

    CAS  Google Scholar 

  5. Jeziorowski, H., Knoezinger, H.: Laser induced electronic excitation of surface hydroxide ions and scattering background in laser Raman spectra of oxide surfaces. Chem. Phys. Lett. 51, 519–522 (1977)

    CAS  Google Scholar 

  6. Turner, I.D.M., Paul, S.O., Reid, E., Hendra, P.J.: Laser-Raman study of isomerization of olefins over alumina. J. Chem. Soc. Faraday Trans. I. 72, 2829–2835 (1976)

    CAS  Google Scholar 

  7. Egerton, T.A., Hardin, A.H., Kozirovs, Y., Sheppard, N.: Reduction of fluorescence from high-area oxides of silica, gamma-alumina, silica-alumina, and Y-zeolite types and Raman-spectra for a series of molecules adsorbed on these surfaces. J. Catal. 32, 343–361 (1974)

    CAS  Google Scholar 

  8. Li, C., Stair, P.C.: Ultraviolet Raman spectroscopy characterization of sulfated zirconia catalysts: fresh, deactivated and regenerated. Catal. Lett. 36, 119–123 (1996)

    CAS  Google Scholar 

  9. Long, D.A.: The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley, Chichester; New York (2001)

    Google Scholar 

  10. Hagen, G., Glavaski, B.S., Yeager, E.: The Raman Spectrum of an adsorbed species on electrode surfaces. J. Electroanal. Chem. Interfacial Electrochem. 88, 269–275 (1978)

    CAS  Google Scholar 

  11. Asher, S.A.: UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. Annu. Rev. Phys. Chem. 39, 537–588 (1988)

    CAS  Google Scholar 

  12. Hudson, B., Kelly, P.B., Ziegler, L.D., Desiderio, R.A., Gerrity, D.P., Hess, W., Bates, R.: Far ultraviolet laser resonance Raman studies of electronic excitations. In: Garetz, B.A., Lombardi, J.R. (eds.) Advances in Laser Spectroscopy, vol. 3, pp. 1–32. Wiley, New York (1986)

    Google Scholar 

  13. Stair, P.C., Li, C.: Ultraviolet Raman spectroscopy of catalysts and other solids. J. Vac. Sci. Technol. A. 15, 1679–1684 (1997)

    CAS  Google Scholar 

  14. Ding, K., Gulec, A., Johnson, A.M., Drake, T.L., Wu, W., Lin, Y., Weitz, E., Marks, L.D., Stair, P.C.: Highly efficient activation, regeneration, and active site identification of oxide-based olefin metathesis catalysts. ACS Catal. 6, 5740–5746 (2016)

    CAS  Google Scholar 

  15. Wu, Z., Zhang, C., Stair, P.C.: Influence of absorption on quantitative analysis in Raman spectroscopy. Catal. Today. 113, 40–47 (2006)

    CAS  Google Scholar 

  16. Kim, H., Kosuda, K.M., Van Duyne, R.P., Stair, P.C.: Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4820–4844 (2010)

    CAS  Google Scholar 

  17. A dimensional line drawing of the off-axis ellipsoidal mirror is available from the author

    Google Scholar 

  18. Chua, Y.T., Stair, P.C., Wachs, I.E.: A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J. Phys. Chem. B. 105, 8600–8606 (2001)

    CAS  Google Scholar 

  19. Signorile, M., Bonino, F., Damin, A., Bordiga, S.: A novel Raman setup based on magnetic-driven rotation of sample. Top. Catal. 61, 1491–1498 (2018)

    CAS  Google Scholar 

  20. Asher, S.A.: UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Part 1. Anal. Chem. 65, 59A–66A (1993)

    CAS  Google Scholar 

  21. Chua, Y.T., Stair, P.C.: A novel fluidized bed technique for measuring Uv Raman spectra of catalysts and adsorbates. J. Catal. 196, 66–72 (2000)

    CAS  Google Scholar 

  22. Beato, P., Schachtl, E., Barbera, K., Bonino, F., Bordiga, S.: Operando Raman spectroscopy applying novel fluidized bed micro-reactor technology. Catal. Today. 205, 128–133 (2013)

    CAS  Google Scholar 

  23. Signorile, M., Gama, D.R., Bonino, F., Svelle, S., Beato, P., Bordiga, S.: Operando Uv-Raman study of the methanol to olefins reaction over Sapo-34: spatiotemporal evolution monitored by different reactor approaches. Catal. Today. 336, 203–209 (2019)

    CAS  Google Scholar 

  24. Waleska, P.S., Hess, C.: Oligomerization of supported vanadia: structural insight using surface-science models with chemical complexity. J. Phys. Chem. C. 120, 18510–18519 (2016)

    CAS  Google Scholar 

  25. Waleska, P., Rupp, S., Hess, C.: Operando multiwavelength and time-resolved Raman spectroscopy: structural dynamics of a supported vanadia catalyst at work. J. Phys. Chem. C. 122, 3386–3400 (2018)

    CAS  Google Scholar 

  26. Li, C., Stair, P.C.: An advance in Raman studies of catalysts: ultraviolet resonance Raman spectroscopy. Stud. Surf. Sci. Catal. 101, 881–890 (1996)

    CAS  Google Scholar 

  27. Allotta, P.M., Stair, P.C.: Time-resolved studies of ethylene and propylene reactions in zeolite H-Mfi by in-situ fast Ir heating and Uv Raman spectroscopy. ACS Catal. 2, 2424–2432 (2012)

    CAS  Google Scholar 

  28. Zhang, C., Allotta, P.M., Xiong, G., Stair, P.C.: Uv-Raman and fluorescence spectroscopy of benzene adsorbed inside zeolite pores. J. Phys. Chem. C. 112, 14501–14507 (2008)

    CAS  Google Scholar 

  29. Wu, Z., Kim, H.-S., Stair, P.C., Rugmini, S., Jackson, S.D.: On the structure of vanadium oxide supported on Aluminas: Uv and visible Raman spectroscopy, Uv-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies. J. Phys. Chem. 109, 2793–2800 (2005)

    CAS  Google Scholar 

  30. Nitsche, D., Hess, C.: In situ diagnostics of catalytic materials using tunable confocal Raman spectroscopy. J. Raman Spectrosc. 44, 1733–1738 (2013)

    CAS  Google Scholar 

  31. Cheong, C.U.A., Stair, P.C.: In situ studies of the lubricant chemistry and frictional properties of perfluoropolyalkyl ethers at a sliding contact. Tribol. Lett. 10, 117–126 (2001)

    CAS  Google Scholar 

  32. Stair, P.C.: Advances in Raman spectroscopy methods for catalysis research. Curr. Opin. Solid State Mater. Sci. 5, 365–369 (2001)

    CAS  Google Scholar 

  33. Stair, P.C.: The application of Uv Raman spectroscopy for the characterization of catalysts and catalytic reactions. Adv. Catal. 51, 75–98 (2007)

    CAS  Google Scholar 

  34. Hess, C.: In situ Raman spectroscopy of catalysts: examples from current research. Top. Catal. 56, 1593–1600 (2013)

    CAS  Google Scholar 

  35. Wu, Z.L.: Multi-wavelength Raman spectroscopy study of supported vanadia catalysts: structure identification and quantification. Chinese J. Catal. 35, 1591–1608 (2014)

    CAS  Google Scholar 

  36. Bordiga, S., Lamberti, C., Bonino, F., Travert, A., Thibault-Starzyk, F.: Probing zeolites by vibrational spectroscopies. Chem. Soc. Rev. 44, 7262–7341 (2015)

    CAS  Google Scholar 

  37. Jin, S., Feng, Z., Fan, F., Li, C.: Uv Raman spectroscopic characterization of catalysts and catalytic active sites. Catal. Lett. 145, 468–481 (2015)

    CAS  Google Scholar 

  38. Merlen, A., Buijnsters, J.G., Pardanaud, C.: A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: from graphene to amorphous carbons. Coatings. 7, 153/151–153/155 (2017)

    Google Scholar 

  39. Wu, Q., Meng, X., Gao, X., Xiao, F.-S.: Solvent-free synthesis of zeolites: mechanism and utility. Acc. Chem. Res. 51, 1396–1403 (2018)

    CAS  Google Scholar 

  40. Depla, A., Lesthaeghe, D., van Erp, T.S., Aerts, A., Houthoofd, K., Fan, F., Li, C., Van Speybroeck, V., Waroquier, M., Kirschhock, C.E.A., Martens, J.A.: 29si Nmr and Uv-Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol-gel chemistry. J. Phys. Chem. C. 115, 3562–3571 (2011)

    CAS  Google Scholar 

  41. Depla, A., Verheyen, E., Veyfeyken, A., Van Houteghem, M., Houthoofd, K., Van Speybroeck, V., Waroquier, M., Kirschhock, C.E.A., Martens, J.A.: Uv-Raman and 29si Nmr spectroscopy investigation of the nature of silicate oligomers formed by acid catalyzed hydrolysis and polycondensation of tetramethylorthosilicate. J. Phys. Chem. C. 115, 11077–11088 (2011)

    CAS  Google Scholar 

  42. Ju, X., Tian, F., Wang, Y., Fan, F., Feng, Z., Li, C.: A novel synthetic strategy of Fe-Zsm-35 with pure framework Fe species and its formation mechanism. Inorg. Chem. Front. 5, 2031–2037 (2018)

    CAS  Google Scholar 

  43. Yu, Y., Xiong, G., Li, C., Xiao, F.-S.: Characterization of iron atoms in the framework of Mfi-type zeolites by Uv resonance Raman spectroscopy. J. Catal. 194, 487–490 (2000)

    CAS  Google Scholar 

  44. Li, C.: Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by Uv resonance Raman spectroscopy. J. Catal. 216, 203–212 (2003)

    CAS  Google Scholar 

  45. Fan, F.T., Sun, K.J., Feng, Z.C., Xia, H.A., Han, B., Lian, Y.X., Ying, P.L., Li, C.: From molecular fragments to crystals: a Uv Raman spectroscopic study on the mechanism of Fe-Zsm-5 synthesis. Chem Eur J. 15, 3268–3276 (2009)

    CAS  Google Scholar 

  46. Koekkoek, A.J.J., Kim, W., Degirmenci, V., Xin, H., Ryoo, R., Hensen, E.J.M.: Catalytic performance of sheet-like Fe/Zsm-5 zeolites for the selective oxidation of benzene with nitrous oxide. J. Catal. 299, 81–89 (2013)

    CAS  Google Scholar 

  47. Wang, J., Xia, H., Ju, X., Feng, Z., Wang, J., Fan, F., Li, C.: Influence of extra-framework Al on the structure of the active iron sites in Fe/Zsm-35. J. Catal. 300, 251–259 (2013)

    CAS  Google Scholar 

  48. Wu, Z., Stair, P.C., Rugmini, S., Jackson, S.D.: Raman spectroscopic study of V/Θ-Al2o3 catalysts: quantification of surface vanadia species and their structure reduced by hydrogen. J. Phys. Chem. C. 111, 16460–16469 (2007)

    CAS  Google Scholar 

  49. Chan, S.S., Wachs, I.E., Murrell, L.L., Wang, L., Hall, W.K.: In situ laser Raman spectroscopy of supported metal oxides. J. Phys. Chem. 88, 5831–5835 (1984)

    CAS  Google Scholar 

  50. Wu, Z., Stair, P.C.: Uv Raman spectroscopic studies of V/Θ-Al2o3 catalysts in butane dehydrogenation. J. Catal. 237, 220–229 (2006)

    CAS  Google Scholar 

  51. Li, C., Stair, P.C.: Coke formation in zeolites studied by a new technique: ultraviolet resonance Raman spectroscopy. Stud. Surf. Sci. Catal. 105A, 599–606 (1997)

    CAS  Google Scholar 

  52. Signorile, M., Bonino, F., Damin, A., Bordiga, S.: In situ resonant Uv-Raman spectroscopy of polycyclic aromatic hydrocarbons. J. Phys. Chem. C. 119, 11694–11698 (2015)

    CAS  Google Scholar 

  53. Rojo-Gama, D., Signorile, M., Bonino, F., Bordiga, S., Olsbye, U., Lillerud, K.P., Beato, P., Svelle, S.: Structure-deactivation relationships in zeolites during the methanol-to-hydrocarbons reaction: complementary assessments of the coke content. J. Catal. 351, 33–48 (2017)

    CAS  Google Scholar 

  54. Signorile, M., Rojo-Gama, D., Bonino, F., Beato, P., Svelle, S., Bordiga, S.: Topology-dependent hydrocarbon transformations in the methanol-to-hydrocarbons reaction studied by operando Uv-Raman spectroscopy. Phys. Chem. Chem. Phys. 20, 26580–26590 (2018)

    CAS  Google Scholar 

  55. Tempelman, C.H.L., Hensen, E.J.M.: On the deactivation of Mo/Hzsm-5 in the methane dehydroaromatization reaction. Appl Catal B. 176-177, 731–739 (2015)

    CAS  Google Scholar 

  56. Han, H., Liu, M., Ding, F., Wang, Y., Guo, X., Song, C.: Effects of cesium ions and cesium oxide in side-chain alkylation of toluene with methanol over cesium-modified zeolite X. Ind. Eng. Chem. Res. 55, 1849–1858 (2016)

    CAS  Google Scholar 

  57. Han, H., Liu, M., Nie, X., Ding, F., Wang, Y., Li, J., Guo, X., Song, C.: The promoting effects of alkali metal oxide in side-chain alkylation of toluene with methanol over basic zeolite X. Microporous Mesoporous Mater. 234, 61–72 (2016)

    CAS  Google Scholar 

  58. An, H., Zhang, F., Guan, Z., Liu, X., Fan, F., Li, C.: Investigating the coke formation mechanism of H-Zsm-5 during methanol dehydration using operando Uv-Raman spectroscopy. ACS Catal. 8, 9207–9215 (2018)

    CAS  Google Scholar 

  59. Li, C., Xiong, G., Xin, Q., Liu, J.K., Ying, P.L., Feng, Z.C., Li, J., Yang, W.B., Wang, Y.Z., Wang, G.R., Liu, X.Y., Lin, M., Wang, X.Q., Min, E.Z.: Uv resonance Raman spectroscopic identification of titanium atoms in the framework of Ts-1 zeolite. Angew. Chem. Int. Ed. Engl. 38, 2220–2222 (1999)

    CAS  Google Scholar 

  60. Notari, B.: Synthesis and catalytic properties of titanium-containing zeolites. Stud. Surf. Sci. Catal. 37, 413–425 (1988)

    CAS  Google Scholar 

  61. Wang, L., Xiong, G., Su, J., Li, P., Guo, H.: In situ Uv Raman spectroscopic study on the reaction intermediates for propylene epoxidation on Ts-1. J. Phys. Chem. C. 116, 9122–9131 (2012)

    CAS  Google Scholar 

  62. Xiong, G., Cao, Y., Guo, Z., Jia, Q., Tian, F., Liu, L.: The roles of different titanium species in Ts-1 zeolite in propylene epoxidation studied by in situ Uv Raman spectroscopy. Phys. Chem. Chem. Phys. 18, 190–196 (2016)

    CAS  Google Scholar 

  63. Guo, Q., Feng, Z., Li, G., Fan, F., Li, C.: Finding the “missing components” during the synthesis of Ts-1 zeolite by Uv resonance Raman spectroscopy. J. Phys. Chem. C. 117, 2844–2848 (2013)

    CAS  Google Scholar 

  64. Su, J., Xiong, G., Zhou, J., Liu, W., Zhou, D., Wang, G., Wang, X., Guo, H.: Amorphous Ti species in titanium silicalite-1: structural features, chemical properties, and inactivation with sulfosalt. J. Catal. 288, 1–7 (2012)

    CAS  Google Scholar 

  65. Nitsche, D., Hess, C.: New insight into the structure of dispersed titania by combining normal-mode analysis with experiment. Chem. Phys. Lett. 616, 115–119 (2014)

    Google Scholar 

  66. Waleska, P., Hess, C.: Structural dynamics of dispersed titania during dehydration and oxidative dehydrogenation studied by in situ Uv Raman spectroscopy. Catal. Lett. 148, 2537–2547 (2018)

    CAS  Google Scholar 

  67. Weckhuysen, B.M., Keller, D.E.: Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today. 78, 25–46 (2003)

    CAS  Google Scholar 

  68. Kim, H.-S., Zygmunt, S.A., Stair, P.C., Zapol, P., Curtiss, L.A.: Monomeric vanadium oxide on a Θ-Al2o3 support: a combined experimental/theoretical study. J. Phys. Chem. C. 113, 8836–8843 (2009)

    CAS  Google Scholar 

  69. Kim, H., Ferguson, G.A., Cheng, L., Zygmunt, S.A., Stair, P.C., Curtiss, L.A.: Structure-specific reactivity of alumina-supported monomeric vanadium oxide species. J. Phys. Chem. C. 116, 2927–2932 (2012)

    CAS  Google Scholar 

  70. Wegener, S.L.: Supported vanadium oxides prepared by organometallic grafting and sulfur as a “soft” oxidant for catalytic methane conversion. Thesis (2011)

    Google Scholar 

  71. Samek, I.A., Bobbitt, N.S., Snurr, R.Q., Stair, P.C.: Interactions of Vox species with amorphous Tio2 domains on Ald-derived alumina-supported materials. J. Phys. Chem. C. 123, 7988–7999 (2019)

    CAS  Google Scholar 

  72. Wu, Z., Dai, S., Overbury, S.H.: Multiwavelength Raman spectroscopic study of silica-supported vanadium oxide catalysts. J. Phys. Chem. C. 114, 412–422 (2010)

    CAS  Google Scholar 

  73. Stiegman, A.E.: Comment on “Multiwavelength Raman spectroscopic study of silica-supported vanadium oxide catalysts”. J. Phys. Chem. C. 115, 10917–10924 (2011)

    CAS  Google Scholar 

  74. Wu, Z.L., Dai, S., Overbury, S.H.: Reply to comment on “Multiwavelength Raman spectroscopic study of silica-supported vanadium oxide catalysts”. J. Phys. Chem. C. 115, 10925–10928 (2011)

    CAS  Google Scholar 

  75. Nitsche, D., Hess, C.: Normal mode analysis of silica-supported vanadium oxide catalysts: comparison of theory with experiment. Catal. Commun. 52, 40–44 (2014)

    CAS  Google Scholar 

  76. Nitsche, D., Hess, C.: Structure of isolated vanadia and titania: a deep Uv Raman, Uv-Vis, and Ir spectroscopic study. J. Phys. Chem. C. 120, 1025–1037 (2016)

    CAS  Google Scholar 

  77. Moisii, C., van de Burgt, L.J., Stiegman, A.E.: Resonance Raman spectroscopy of discrete silica-supported vanadium oxide. Chem. Mater. 20, 3927–3935 (2008)

    CAS  Google Scholar 

  78. Wu, Z.L., Rondinone, A.J., Ivanov, I.N., Overbury, S.H.: Structure of vanadium oxide supported on ceria by multiwavelength Raman spectroscopy. J. Phys. Chem. C. 115, 25368–25378 (2011)

    CAS  Google Scholar 

  79. Wu, Z., Li, M., Overbury, S.H.: A Raman spectroscopic study of the speciation of vanadia supported on ceria nanocrystals with defined surface planes. ChemCatChem. 4, 1653–1661 (2012)

    CAS  Google Scholar 

  80. Wu, Z.L., Li, M.J., Howe, J., Meyer, H.M., Overbury, S.H.: Probing defect sites on Ceo2 nanocrystals with well-defined surface planes by Raman spectroscopy and O-2 adsorption. Langmuir. 26, 16595–16606 (2010)

    CAS  Google Scholar 

  81. Wu, Z.L., Li, M.J., Mullins, D.R., Overbury, S.H.: Probing the surface sites of Ceo2 nanocrystals with well-defined surface planes via methanol adsorption and desorption. ACS Catal. 2, 2224–2234 (2012)

    CAS  Google Scholar 

  82. Peng, R., Sun, X., Li, S., Chen, L., Fu, M., Wu, J., Ye, D.: Shape effect of Pt/Ceo2 catalysts on the catalytic oxidation of toluene. Chem. Eng. J. (Amsterdam, Neth.). 306, 1234–1246 (2016)

    CAS  Google Scholar 

  83. Wang, B., Chen, B., Sun, Y., Xiao, H., Xu, X., Fu, M., Wu, J., Chen, L., Ye, D.: Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/Ceo2 catalysts. Appl Catal B. 238, 328–338 (2018)

    CAS  Google Scholar 

  84. Xiao, H., Wu, J., Wang, X., Wang, J., Mo, S., Fu, M., Chen, L., Ye, D.: Ozone-enhanced deep catalytic oxidation of toluene over a platinum-ceria-supported Bea zeolite catalyst. Mol. Catal. 460, 7–15 (2018)

    CAS  Google Scholar 

  85. Schilling, C., Hess, C.: Real-time observation of the defect dynamics in working Au/Ceo2 catalysts by combined operando Raman/Uv-Vis spectroscopy. J. Phys. Chem. C. 122, 2909–2917 (2018)

    CAS  Google Scholar 

  86. Schilling, C., Hess, C.: Elucidating the role of support oxygen in the water-gas shift reaction over ceria-supported gold catalysts using operando spectroscopy. ACS Catal. 9, 1159–1171 (2019)

    CAS  Google Scholar 

  87. Maganas, D., Trunschke, A., Schloegl, R., Neese, F.: A unified view on heterogeneous and homogeneous catalysts through a combination of spectroscopy and quantum chemistry. Faraday Discuss. 188, 181–197 (2016)

    CAS  Google Scholar 

  88. Kubas, A., Noak, J., Trunschke, A., Schloegl, R., Neese, F., Maganas, D.: A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance Raman spectra of M1 Movox. Chem. Sci. 8, 6338–6353 (2017)

    CAS  Google Scholar 

Download references

Acknowledgments

PCS acknowledges support by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract DE-AC02-06CH11357 and Grant DE-FG02-03ER15457. Thanks to Dr. Dingdi Wang for drafting Fig. 6.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Stair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stair, P.C. (2023). Ultraviolet (UV) Raman Spectroscopy. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_6

Download citation

Publish with us

Policies and ethics