Skip to main content

Action Spectroscopy in Biology

  • Chapter
  • First Online:
Photobiology

Abstract

Action spectroscopy is a method for identifying the light-absorbing chromophore in a photobiological or biochemical process by comparing the efficiency of radiation of different wavelengths in driving the process. This chapter explains the principle and gives several examples from the history of biology of what has been achieved using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79:137–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Björn LO (1969a) Action spectra for transformation and fluorescence of protochlorophyll holochrome from bean leaves. Physiol Plant 22:1–17

    Article  Google Scholar 

  • Björn LO (1969b) Studies on the phototransformation and fluorescence of protochlorophyll holochrome in vitro. In: Metzner H (ed) Progress in photosynthesis research, vol 2. H. Laupp Jr, Tübingen, pp 618–629

    Google Scholar 

  • Björn LO, Sundqvist C, Öquist G (2007) A tribute to Per Halldal (1922–1986), a Norwegian photobiologist in Sweden. Photosynth Res 92:7–11

    Article  PubMed  Google Scholar 

  • Diakoff S, Scheibe J (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51:382–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engelmann TW (1882a) Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot Ztg 40:419–426

    Google Scholar 

  • Engelmann TW (1882b) Ueber Assimilation von Haematococcus. Bot Ztg 40:663–669

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot Ztg 42:81–94, 97–106 and Tafel II

    Google Scholar 

  • Fujita Y, Hattori A (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol 3:209–220

    CAS  Google Scholar 

  • Gates FL (1928) On nuclear derivatives and the lethal action of ultra-violet light. Science 68:479–480

    Article  CAS  PubMed  Google Scholar 

  • Gates FL (1929) A study of the bactericidal action of ultra violet light. I. The reaction to monochromatic radiations. J Gen Physiol 14:31–42

    Article  Google Scholar 

  • Gates FL (1930) A study of the action of ultra violet light III. The absorption of ultra violet light by bacteria. J Gen Physiol 14:31–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giese AC, Leighton PA (1935) Quantitative studies on the photolethal effects of quartz ultra-violet radiation upon Paramecium. J Gen Physiol 18:557–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann KM (1967) Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z Naturforsch 22b:266–275

    Google Scholar 

  • Haxo FT (1960) The wavelength dependence of photosynthesis and the role of accessory pigments. In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 339–376

    Google Scholar 

  • Haxo FT, Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33:389–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hertel E (1905) Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Z Allg Physiol 5:95–122

    Google Scholar 

  • Hollaender A, Claus WD (1936) The bactericidal effect of ultraviolet radiation on Escherichia coli in liquid suspensions. J Gen Physiol 19:753–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levring T (1947) Submarine daylight and the photosynthesis of marine algae. Göteborgs Kgl. Vetenskaps- och Vitterhets-samhälles Handl., 6:e följden, ser. B, band 5, nr 6. 90 s

    Google Scholar 

  • Pringsheim N (1886) Zur Beurtheilung der Engelmann’schen Bakterienmethode in ihrer Brauchbarkeit zur quantitativen Bestimmung der Sauerstoffabgabe im Spektrum. Berl Deutsch Bot Ges 4:40–46

    Google Scholar 

  • Schopfer P, Siegelman HW (1969) Purification of protochlorophyllide holochrome. In: Metzner H (ed) Progress in photosynthesis research, vol 2. H. Laupp Jr, Tübingen, pp 612–618

    Google Scholar 

  • Sundqvist C, Björn LO (2007) A tribute to Hemming Virgin, a Swedish pioneer in plant photobiology. Photosynth Res 92:13–16

    Article  CAS  PubMed  Google Scholar 

  • Timiriazeff C (1885) État actuel de nos conaissances sur la fonction chlorophyllienne. Ann. des Sc. Nat. Botanique (3) Tome II

    Google Scholar 

  • Vierstra RD, Quail PH (1983a) Purification and initial characterization of 124-kilodalton phytochrome from Avena. Biochemistry 22:2498–2505

    Article  CAS  Google Scholar 

  • Vierstra RD, Quail PH (1983b) Photochemistry of 124-kilodalton Avena phytochrome in vitro. Plant Physiol 72:264–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogelmann TC, Scheibe J (1978) Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143:233–239

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1926) Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem Z 177:471–486

    CAS  Google Scholar 

  • Warburg O, Negelein E (1929a) Über die photochemische Dissoziation bei intermittierender Belichtung und das absolute Absorptionsspektrum des Atmungsferments. Biochem Z 202:202–228

    Google Scholar 

  • Warburg O, Negelein E (1929b) Absolutes Absorptionsspektrum des Atmungsferments. Biochem Z 204:495–499

    CAS  Google Scholar 

  • Withrow RB, Klein WH, Elstad V (1957) Action spectra of photomorphogenetic induction and its inactivation. Plant Physiol 32:453–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziv L, Tovin A, Strasser D, Gothilf Y (2007) Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Exp Eye Res 84:92–99

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Olof Björn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björn, L.O. (2015). Action Spectroscopy in Biology. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_8

Download citation

Publish with us

Policies and ethics