Skip to main content
Log in

Soft magnetic properties enhancement of FeGaB composites through alumina lamination and its mechanism

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Better soft magnetic properties of magnetic thin films are needed as micro-electromechanical systems electromagnetic devices become high-frequency, miniaturized, and integrated. Multilayer magnetic composites outperform single-layer materials in performance and flexibility, attracting interest. However, lamination’s effect on the soft magnetic properties of magnetic composites remains unclear. This study created a Comsol finite-element simulation model of the magnetic film to evaluate how lamination affects the eddy current suppression rate (SR) and magnetostriction performance reduction rate (RR). In addition, incorporating the experimental findings related to the soft magnetic properties, the magnetic composite material had been effectively developed: after inserting ten layers of 5 nm alumina film, the eddy current SR reached 92.8%, while the magnetostriction RR and coercive force were found to be merely 7.1% and 2 × 79.6 A/m, respectively. Furthermore, an investigation of the microscopic mechanism behind the impact of lamination on the properties of the magnetic film is also being addressed. It is found that the substrate and thickness effect simultaneously determine the properties of the single-layer magnetic film. In addition, the complex interlayer coupling effect between the isolated magnetic films is another critical factor affecting the soft magnetic properties of the magnetic composites. This study provides an optimal design approach for magnetic composite materials and clarifies the internal effect mechanism to improve the soft magnetic properties of those materials. The findings offer guidance for the application of high-frequency magnetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Q. Pan, X.Y. Zhang, B.J. Xia, B.J. Chu, Magnetoelectric response in laminated BaFe12O19/Pb (Zr, Ti) O3 composites. J. Appl. Phys. (2023). https://doi.org/10.1063/5.0150380

    Article  Google Scholar 

  2. S. Sadhukhan, A. Mahapatra, A. Mitra, N. Bhakta, S. Das, A. Mallick, A. Banerjee, S. Chatterjee, J. Greneche, P.K. Chakrabarti, Strong modulation effects on magnetoelectric behavior of Co-ferrite nanoparticles incorporated in ZnO medium in nano-regime synthesized in chemical routes. Appl. Phys. A (2023). https://doi.org/10.1007/s00339-022-06345-8

    Article  Google Scholar 

  3. M. Sufyan, Z.Y. Lu, Z.W. Chen, X. Wang, M.W. Hanif, Magnetoelectric response of 3-phase (1–x)[0.7BiFeO3-0.3CoFe2O4]-xPbTiO3 multiferroic ceramic composites. Appl. Phys. A. (2023). https://doi.org/10.1007/s00339-022-06286-2

    Article  Google Scholar 

  4. F.S. Bruckmann, F.B. Nunes, T.R. Salles, C. Franco, F.C. Cadona, C.R.B. Rhoden, Biological applications of silica-based nanoparticles. Magnetochemistry 8, 10 (2022)

    Article  Google Scholar 

  5. F.B. Nunes, F.S. Bruckmann, T.R. Salles, C.R.B. Rhoden, Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. Environ. Sci. Pollut. R. 30(5), 12658–12671 (2023)

    Article  Google Scholar 

  6. T.R. Salles, F.S. Bruckmann, A.R. Viana, L.M.F. Krause, S.R. Mortari, C.R.B. Rhoden, Magnetic nanocrystalline cellulose: azithromycin adsorption and in vitro biological activity against melanoma cells. J. Polym. Environ. 30(7), 2695–2713 (2022)

    Article  Google Scholar 

  7. Z.F. Yao, S. Tiwari, J.D. Schneider, R. Candler, G. Carman, Y. Wang, Enhanced planar antenna efficiency through magnetic thin-films. IEEE J. Multiscale Multiphys. Comput. Tech. 6, 249–258 (2021)

    Article  ADS  Google Scholar 

  8. K. Yadagiri, Y. Wang, P. Wu, T. Wu, Ferromagnetic resonance properties of multilayer FeGaB/Ta/FeGaB structure. J. Mater. Sci. 33(7), 3870–3879 (2022)

    Google Scholar 

  9. K. Yadagiri, J.W. Long, Y.X. Wang, Z. Zhu, T. Wu, Magnetodynamic properties on square patterned of FeGaB and Al2O3/FeGaB thin films. J. Mater. Sci. 33(19), 15927–15935 (2022)

    Google Scholar 

  10. X. Xing, M. Liu, S.D. Li, O. Obi, J. Lou, Z.Y. Zhou, B. Chen, N.X. Sun, RF magnetic properties of FeCoB/Al2O3/FeCoB structure with varied Al2O3 thickness. IEEE Trans. Magn. 47, 3104–3107 (2011)

    Article  ADS  Google Scholar 

  11. I. Shahid, G. Yin, J. Yuan, Y.G. Ma, S.L. He, FeGaB(25 nm)/Al2O3/FeGaB(25 nm) multilayer structures: effects of variation of Al2O3 thickness on static and dynamic magnetic properties. Rare Metal Mat. Eng. 47, 1951–1957 (2018)

    Article  Google Scholar 

  12. Y. Karampuri, Y.X. Wang, T. Wu, Ferromagnetic resonance and spin-wave exchange stiffness of FeGaB/Al2O3 multilayer thin film stack for microwave applications. Mater. Chem. Phys. 279, 125776 (2022)

    Article  Google Scholar 

  13. T. Nan, H. Lin, Y. Gao, A.D. Matyushov, G.L. Yu, H.H. Chen, N. Sun, S.J. Wei, Z.G. Wang, M.H. Li, X.J. Wang, A.M. Belkessam, R. Guo, B. Chen, J. Zhou, Z. Qian, Y. Hui, M. Rinaldi, M. Mcconney, B. Howe, Z.Q. Hu, J.G. Brown, N. Sun, Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-00343-8

    Article  Google Scholar 

  14. Y.F. He, Y. Gao, H.H. Chen, H. Lin, Y.Y. Wei, X. Yang, N. Sun, Integrated tunable bandstop filter using self-biased FeGaB/Al2O3 multilayer thin film. IEEE T. Magn. 54(9), 1–4 (2018)

    Article  Google Scholar 

  15. W.C. Ren, J.T. Li, G. Liu, J.R. Chen, S. Chen, Z.J. Gu, J.B. Li, J.R. Li, Y. Gao, Design and optimization of a BAW magnetic sensor based on magnetoelectric coupling. Micromachines 13(2), 206 (2022)

    Article  Google Scholar 

  16. W.C. Ren, J.T. Li, S. Chen, G.F. Wang, P.C. Zhu, J.C. Chen, Eddy current suppression and soft magnetism enhancement in FeGaB-based magnetic composites with alumina lamination. J. Magn. Magn. Mater. 574, 170714 (2023)

    Article  Google Scholar 

  17. Z.M. Cai, C.Q. Zhu, L.W. Wu, B.C. Luo, P. Feng, X.H. Wand, Vortex domain configuration for energy-storage ferroelectric ceramics design: a phase-field simulation. Appl. Phys. Lett. (2021). https://doi.org/10.1063/5.0051853

    Article  Google Scholar 

  18. P.C. Xiong, W.B. Ma, S. Yuan, Y. Liu, B. Wand, Control of the chirality of a vortex in a ferroelectric nanodot by uniform electric fields mediated by inhomogeneous surface screening. AIP Adv. (2022). https://doi.org/10.1063/5.0076281

    Article  Google Scholar 

  19. W. Xiong, W.J. Chen, Y. Zheng, Path-dependent vortex switching in ferroelectric nanoplate junctions toward a memory device concept. Front. Phys. (2022). https://doi.org/10.3389/fphy.2021.791019

    Article  Google Scholar 

  20. J. Lindner, K. Baberschke, Ferromagnetic resonance in coupled ultrathin films. J. Phys. Condens. Mat. 15(5), S465–S478 (2003)

    Article  ADS  Google Scholar 

  21. M. Endo, S. Kanai, F. Matsukura, H. Ohno, Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Let. (2010). https://doi.org/10.1063/1.3429592

    Article  Google Scholar 

  22. F.D. Broeder, W. Hoving, P. Bloemen, Magnetic anisotropy of multilayers. J. Magn. Magn. Mater. 93, 562–570 (1991)

    Article  ADS  Google Scholar 

  23. P. Gowtham, G. Stiehi, D. Ralph, R. Buhrman, Thickness-dependent magnetoelasticity and its effects on perpendicular magnetic anisotropy in Ta/CoFeB/MgO thin films. Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.93.024404

    Article  Google Scholar 

  24. Y.L. Bai, J.Y. Chen, S.F. Zhao, Q.S. Lu, Magneto-dielectric and magnetoelectric anisotropies of CoFe 2O4/Bi5Ti3FeO15 bilayer composite heterostructural films. RSC Adv. 6(57), 52353–52359 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology on Electronic Information Control Laboratory (Grant number: 6142105200203).

Author information

Authors and Affiliations

Authors

Contributions

WR: conceptualization, methodology, writing, analysis. JL: deposition, characteristics, analysis. TW: deposition, characteristics. BL: conceptualization, methodology. GW: simulation, data collection. ZW: deposition, data processing. CL: investigation, formal analysis. TL: modeling. HG: software.

Corresponding authors

Correspondence to Wanchun Ren or Bo Liu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article's content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Li, J., Wei, T. et al. Soft magnetic properties enhancement of FeGaB composites through alumina lamination and its mechanism. Appl. Phys. A 129, 696 (2023). https://doi.org/10.1007/s00339-023-06989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06989-0

Keywords

Navigation