Skip to main content
Log in

Magnetic Nanocrystalline Cellulose: Azithromycin Adsorption and In Vitro Biological Activity Against Melanoma Cells

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study reports a simple methodology of obtaining magnetic nanocrystalline cellulose under very mild conditions employing only Fe2+ as the iron source, enabling the control of the amount Fe3O4 incorporated. Magnetic nanocomposites were characterized by FTIR, XRD, SEM, and Raman techniques. The adsorption results showed that the maximum of AZT adsorbed was reached at pH 3.0 using NC‧Fe3O4 1:10. The adsorption efficiency is highly dependent on experimental conditions. Regarding equilibrium and adsorption kinetic, Freundlich and Pseudo-second-order models show the best adjust for the experimental data. Thermodynamic values demonstrated that adsorption is an exothermic process and occurs spontaneously. Magnetic nanoadsorbent proves to be efficient in AZT removal from the aqueous medium, avoiding filtration/centrifugation steps. The in vitro biological assays showed that magnetic nanobiopolymers exhibited biocompatibility and higher toxicity against melanoma cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Debotton N, Dahan A (2017) Applications of polymers as pharmaceutical excipients in solid oral dosage forms. Med Res Rev 37:52–97

    Article  CAS  PubMed  Google Scholar 

  2. Shrotri A, Kobayashi H, Fukuoka A (2018) Cellulose depolymerization over heterogeneous catalysts. Acc Chem Res 51:716–768

    Article  CAS  Google Scholar 

  3. Zheng S, Shinzato S, Ogata S, Mao SX (2022) Experimental molecular dynamics for individual atomic-scale plastic in nanoscale crystals. J Mech Phys Solids 158:104687

    Article  CAS  Google Scholar 

  4. Li C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724

    Article  PubMed  CAS  Google Scholar 

  5. Jacek P, Dourado F, Gama M, Bielecki S (2019) Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotech 12:633–649

    Article  Google Scholar 

  6. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Johan MRB, Fen LB (2020) Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J Mech Behav Biomed Mater 110:103884

    Article  CAS  PubMed  Google Scholar 

  7. Heise K, Kontturi E, Allahverdiyeva Y, Tammelin T, Linder MB, Ikkala O (2020) Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications. Adv Mater 33:2004349

    Article  CAS  Google Scholar 

  8. Čolić M, Tomić S, Bekić M (2020) Immunological aspects of nanocellulose. Immunol Lett 222:80–89

    Article  PubMed  CAS  Google Scholar 

  9. Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Zhou F, Jiang X (2018) Nanocellulose-based antibacterial materials. Adv Health Mat 7:1800334

    Article  CAS  Google Scholar 

  10. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applicationsJ. Appl Polym Sci 15:132

    Google Scholar 

  11. Gul S, Khan SB, Rehman IU, Khan MA, Khan MI (2019) A Comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater Sci 6:179

    Article  Google Scholar 

  12. Bruckmann FS, Pimentel AC, Viana AR, Salles TR, Krause LMF, Mortari SR, Silva IZ, Rhoden CRB (2020) Synthesis, characterization and cytotoxicity evaluation of magnetic nanosilica in L929 cell lineDiscip. Sci Cienc Nat Tecnol 21:1–14

    Google Scholar 

  13. Rhoden CRB, Bruckmann FS, Salles TR, Kaufmann CG, Mortari SR (2021) Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. J Water Process Eng 43:102262

    Article  Google Scholar 

  14. Wang B, Sandre O, Wang K, Shi H, Xiong K, Huang YB, Wu T, Yan M, Courtois J (2019) Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material. Mater Sci Eng 104:109920

    Article  CAS  Google Scholar 

  15. Huang J, Li Y, Orza A, Lu A, Guo P, Wang L, Yang L, Mao M (2016) Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Funct Mater 26:3818–3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nassour C, Barton SJ, Nabhani-Gebara S, Saab Y, Barker J (2020) Occurrence of anticancer drugs in the aquatic environment: a systematic review. Environ Sci Pollut Res Int 27:1339–1347

    Article  CAS  PubMed  Google Scholar 

  17. Iqbal A, Iqbal K, Li B, Gong D, Qin W (2017) Recent advances in iron nanoparticles: preparation, properties, biological and environmental application. J Nanosci Nanotechnol 17:4386–4409

    Article  CAS  Google Scholar 

  18. Shoeb M, Alam F, Islam M, Parvin N, Islam N, Mamun IR (2021) Assessment of quality of azithromycin, a macrolide antibiotic by NMR spectroscopy. Bangaldesh J Pharmacol 24:37–44

    Article  Google Scholar 

  19. Almeida AC, Gomes T, Lomba JAB, Lillicrap A (2021) Specific toxicity of azithromycin to the freshwater microalga Raphidocelis subcapitata. Ecotoxicol Environ Saf 222:112553

    Article  CAS  PubMed  Google Scholar 

  20. Wahab M, Zahoor M, Salman SM, Kamran AW, Naz S, Burlakovs J, Kaççistova A, Pimenov N, Zekker I (2021) Adsorption-membrane hybrid approach for the removal of azithromycin from water: an attempt to minimize drug resistance problem. Water 13:1969–1989

    Article  CAS  Google Scholar 

  21. Febrianto F, Jang J, Lee SH, Santosa IA, Hidayat W, Kwon JH, Kim NH (2015) Effect of Bamboo species and resin content on properties of oriented strand board prepared from steam-treated bamboo strands. BioResources 10:2642–2655

    Article  CAS  Google Scholar 

  22. Gu H, Zhou X, Lyu S, Pan D, Dong M, Wu S, Ding T, Wei X, Seok I, Wei S, Guo Z (2020) Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J Colloid Interface Sci 560:849–856

    Article  CAS  PubMed  Google Scholar 

  23. Alipour A, Zarinabadi S, Azimi A, Mirzaei M (2020) Adsorptive removal of Pb(II) ions from aqueous solution by thiourea-functionalized magnetic ZnO/nanocellulose composite: optimization by response surface methodology (RSM). Int J Biol Macromol 151:124–135

    Article  CAS  PubMed  Google Scholar 

  24. Davoodi A, Dahrazma B, Goudarzi N, Gorji HG (2019) Adsorptive removal of azithromycin from aqueous solutions using raw and saponin-modified nano diatomite. Water Sci Technol 80:939–949

    Article  CAS  PubMed  Google Scholar 

  25. Poźniak J, Nsengimana J, Laye JP, O’Shea SJ, Diaz JMS, Droop AP, Filia A, Harland M, Davies JR, Mell T, Randerson-Moor JA, Muralidhar S, Hogan SA, Freiberger SN, Levesque MP, Cook GP, Bishop DT, Newton-Bishop J (2019) Genetic and environmental determinants of immune response to Cutaneous Melanoma. Tumor Biol 79:2684–2696

    Google Scholar 

  26. Bruckmann FS, Viana AR, Lopes LQS, Santos RCV, Muller EI, Mortari SR, Rhoden CRB (2021) Synthesis, characterization, and biological activity evaluation of magnetite-functionalized eugenol. J Inorg Organomet Polym Mater. https://doi.org/10.21203/rs.3.rs-1025029/v1

    Article  Google Scholar 

  27. Supramaniam J, Adnan R, Kaus NHM, Bushra R (2018) Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int J Biol Macromol 118:640–648

    Article  CAS  PubMed  Google Scholar 

  28. Salles TR, Rodrigues HB, Bruckmann FS, Alves LC, Mortari SR, Rhoden CRB (2020) Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana. Dsicip Sci Cienc Nat Tecnol 21:15–26

    Google Scholar 

  29. Navarro-Pardo F, Martinez-Bezerra G, Martínez-Hernández AL, Castano VM, Rivera-Armenta JL, Medellín-Rodríguez F, Velasco-Santos C (2013) Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials 6:3494–3513

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wernke G, Shimabuku-Biadola QL, Santos TRT, Silva MF, Fagundes-Klen MR, Gergamasco R (2020) Adsorption of cephalexin in aqueous media by graphene oxide: kinetics, isotherm, and thermodynamics. Environ Sci Pollut Res 27:4725–4736

    Article  CAS  Google Scholar 

  31. Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279

    Article  CAS  PubMed  Google Scholar 

  32. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  33. Repetto G, Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  PubMed  Google Scholar 

  34. Feoktistova M, Geserick P, Leverkus M (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc 4:2016. https://doi.org/10.1101/pdb.prot087379

    Article  Google Scholar 

  35. Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer culturesAnal. Biochem 159:109–113

    CAS  Google Scholar 

  36. Abu-Dief AM, Abdel-Fatah SM (2018) Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Seuf Univ J Appl 7:55–67

    Google Scholar 

  37. Maity D, Ding J, Xue JM (2008) Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct Mater Lett 1:189–193

    Article  CAS  Google Scholar 

  38. Nazir F, Ashraf I, Iqbal M, Ahmed T, Anjum S (2021) 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: in vitro and in vivo studies. Int J Biol Macromol 31:419–433

    Article  CAS  Google Scholar 

  39. Adel A, El-Wahab AZ, Ibrahim A, Al-Shemy M (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials, part II: physicochemical properties. Carbohydr Polym 83:676–687

    Article  CAS  Google Scholar 

  40. Ma Z, Zhang H, Wang Y, Tang X (2019) Development and evaluation of intramuscularly administered nano/microcrystal suspension. Expert Opin Drug Deliv 16:347–361

    Article  CAS  PubMed  Google Scholar 

  41. Lopez JA, González G, Bonilla FA, Zambrano G, Gómez ME (2010) Synthesis and characterization of fe3o4 magnetic nanofluid. Ver Latin Metal Material 30:60–66

    Google Scholar 

  42. Cao L, Fu X, Xu C, Yin S, Chen Y (2017) High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose). Cellulose 24:2849–2860

    Article  CAS  Google Scholar 

  43. Hu X, Zhu S, Ma T, Lu S, Zhao J, Hu X, Song Y, Liao X (2021) Magnetic modified cellulose nanocrystals fabricated using ultrasound-coprecipitation: characterization and application as pickering emulsion stabilizers. LWT 148:111680

    Article  CAS  Google Scholar 

  44. Khalilzadeh MA, Tajik S, Beitollahi H, Venditti RA (2020) Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Ind Eng Chem Res 59:4219–4228

    Article  CAS  Google Scholar 

  45. Saragi T, Depi BL, Butarbutar S, Permana B, Risdiana (2018) The impact of synthesis temperature on magnetite nanoparticles size synthesized by co-precipitation method. J Phys 1013:0212190

    Google Scholar 

  46. Galatenau B, Bunea MC, Stanescu P, Vasile E, Casarica A, Iovu H, Hermenean A, Zaharia C, Costache M (2015) In vitro studies of bacterial cellulose and magnetic nanoparticles smart nanocomposites for efficient chronic wounds healing. Stem Cells Intern 2015:195096

    Google Scholar 

  47. Chen L, Sharma S, Darienzo RE, Tannenbaum R (2020) Decoration of cellulose nanocrystals with ironoxide nanoparticles. Mater Res Exp 7:055003

    Article  CAS  Google Scholar 

  48. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4:31428–31442

    Article  CAS  Google Scholar 

  49. Tang AM, Song JK (2011) Comparative study of pretreatment and maturing methods on the preparation of cellulose/magnetic nanocomposites. Adv Mat Res 239:175–181

    Google Scholar 

  50. Amini A, Ohno K, Maeda T, Kunitomo K (2018) Effect of particle size and apparent density on the initial stages of temperature increase during the microwave heating of Fe3O4. Powder Technol 338:101–109

    Article  CAS  Google Scholar 

  51. Levy D, Giustetto R, Hoser A (2012) Structure of magnetite (Fe 3O 4) above the curie temperature: a cation ordering study. Phys Chem Minerals 39:169–176

    Article  CAS  Google Scholar 

  52. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828

    Article  CAS  Google Scholar 

  53. Sun J, Cui L, Gao Y, He Y, Liu H, Huang Z (2021) Environmental application of magnetic cellulose derived from Pennisetum sinese Roxb for efficient tetracycline removal. Carbohydr Polym 251:117004

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Lu H, Wang Y, Zhao Y, Li X (2019) Efficient removal of methyl blue from aqueous solution by using poly(4-vinylpyridine)–graphene oxide–Fe3O4 magnetic nanocomposites. J Mater Sci 54:7603–7616

    Article  CAS  Google Scholar 

  55. Gupta K, Kumar V, Tikoo KB, Kaushik A, Singhal S (2020) Encrustation of cadmium sulfide nanoparticles into the matrix of biomass derived silanized cellulose nanofibers for adsorptive detoxification of pesticide and textile waste. Chem Eng J 385:123700

    Article  CAS  Google Scholar 

  56. Andrade JR, Oliveira MF, Silva MGC, Vieira MGA (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57:3103–3127

    Article  CAS  Google Scholar 

  57. Bjork J, Hanke F, Palma CA, Samori P, Cecchini M, Persson M (2010) Adsorption of aromatic and anti-aromatic systems on graphene through π−π stacking. J Phys Chem Lett 23:3407–3412

    Article  CAS  Google Scholar 

  58. Bruckmann FS, Zuchetto T, Ledur CM, Santos CL, Silva WL, Fagan SB, Silva IZ, Rhoden CRB (2022. Methylphenidate adsorption onto graphene derivates: theory and experiment. Accepted for publication

  59. Cui S, Wang X, Zhang X, Xia W, Tang X, Lin B, Wu Q, Zhang X, Shen X (2018) Preparation of magnetic MnFe2O4-cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption. Cellulose 25:735–751

    Article  CAS  Google Scholar 

  60. ISO 10993-12 (2009) Biological evaluation of medical devices. Part 12: sample preparation and reference materials, ed. International Organization for Standardization, Geneva

  61. Toriyama K, Takano N, Kokuba H, Kazama H, Moriya S, Hiramoto M, Abe S, Miyazawa K (2021) Azithromycin enhances the cytotoxicity of DNA-damaging drugs via lysosomal membrane permeabilization in lung cancer cells. Cancer Sci 112:3324–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gonzales M, Mitsumori LM, Kushleika JV, Rosenfeld ME, Krishnan KM (2010) Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media Mol 5:286–293. https://doi.org/10.1002/cmmi.391

    Article  CAS  Google Scholar 

  63. Vega-Avila E, Pugsley MK (2011) An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc 54:4–10

    Google Scholar 

  64. Mort RL, Jackson IJ, Patton EE (2015) The melanocyte lineage in development and disease. Development 142:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pugsley MK, Authier S, Curtis MJ (2008) Principles of safety pharmacology. Br J Pharmacol 154:1382–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Csaba N, Caamaño P, Sánchez A, Domínguez F, Alonso MJ (2005) PLGA: poloxamer and PLGA: poloxamine blend nanoparticles: new carriers for gene delivery. Biomacromol 6:271–278

    Article  CAS  Google Scholar 

  67. Wilson JK, Sargent JM, Elgie AW, Hill JG, Taylor CG (1990) A feasibility study of the MTT assay for chemosensitivity testing in ovarian malignancy. Br J Cancer 62:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jacob JA, Salmani JMM, Chen B (2016) Magnetic nanoparticles: mechanistic studies on the cancer cell interaction. Nanotechnol Rev 5:481–488

    CAS  Google Scholar 

  69. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168

    Article  CAS  Google Scholar 

  70. Zavisova V, Koneracka M, Kovac J, Kubovcikova M, Antal I, Kopcansky P, Bednarikova M, Muckova M (2015) The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro. J Magn Magn Mater 380:85–89

    Article  CAS  Google Scholar 

  71. Roman M, Dong S, Hirani A, Lee W (2009) Cellulose nanocrystals for drug delivery. ACS Symp Ser 4:81–91

    Google Scholar 

  72. Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano LIFE 2012(2):1241006

    Article  CAS  Google Scholar 

  73. Kovacs T, Naish B, O’Connor B, Blaise C, Gagné F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4:255

    Article  CAS  PubMed  Google Scholar 

  74. Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42:406–415

    Article  CAS  PubMed  Google Scholar 

  75. Ankamwar B, Lai TC, Huang JH, Liu RS, Hsiao M, Chen CH, Hwu YK (2010) Biocompatibility of Fe(3)O(4) nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21:75102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPERGS, CAPES, Laboratório de Materiais Magnéticos Nanoestruturados (LaMMaN) and Universidade Franciscana (UFN) for the scholarships granted.

Author information

Authors and Affiliations

Authors

Contributions

TS and FB carried out the adsorption experiments and wrote the manuscript. AV carried out the biological assays. SM and LK perform the data analysis with constructive discussions on the manuscript elaboration. CR provided the novel idea, revised the manuscript writing and supervised the research.

Corresponding author

Correspondence to Cristiano Rodrigo Bohn Rhoden.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1289 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rosa Salles, T., da Silva Bruckamann, F., Viana, A.R. et al. Magnetic Nanocrystalline Cellulose: Azithromycin Adsorption and In Vitro Biological Activity Against Melanoma Cells. J Polym Environ 30, 2695–2713 (2022). https://doi.org/10.1007/s10924-022-02388-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02388-3

Keywords

Navigation