Skip to main content
Log in

Magnetoelectric response of 3-phase (1−x)[0.7BiFeO3–0.3CoFe2O4]–xPbTiO3 multiferroic ceramic composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetoelectric coupling in some special materials among the multiferroics family can provide an extra degree of freedom for the functioning of future multifunctional devices. In this context, here, we report a systematic study of multiferroic, 3-phase, (1−x)[0.7BiFeO3–0.3CoFe2O4]–xPbTiO3 composites (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) with magnetically tunned robust magnetoelectric (ME) coupling. These composites were synthesized through sol–gel technique and sintering process. The crystalline phases of rhombohedral BiFeO3, spinel cubic CoFe2O4, and tetragonal PbTiO3 were confirmed by X-ray diffraction analysis. A scanning electron microscope was used to analyze the surface microstructures and an energy-dispersive spectroscopy provided the stoichiometric elemental confirmation. Significantly improved dielectric, magnetic, ferroelectric, and lower ac-leakage behavior were observed. The optimum best dielectric properties, saturation polarization, saturation magnetization, and ME couplings were observed for the 10% PTO (x = 0.1) in the composite series. These properties confirmed that a critical amount of PTO could provide enhanced, magnetically robust polarization, making it an excellent tuning candidate for composite properties and multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to copy rights of the data and are available from the corresponding author upon reasonable request from school of electronic materials science and engineering, south China university of Technology, Guangzhou, China.

References

  1. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nat. Mater. 18(3), 203–212 (2019)

    Article  Google Scholar 

  2. S. Sharma, R.K. Dwivedi, Substitutionally driven phase transition and enhanced multiferroic and electrical properties of (1–x)BiFeO3–(x)Pb(Zr0.52Ti0.48)O3 ceramics (0.0 ≤ x ≤ 1.00). J. Alloy. Compd. 692, 770–773 (2017)

    Article  Google Scholar 

  3. S. Sharma, V. Singh, R.K. Dwivedi, R. Ranjan, A. Anshul, S.S. Amritphale, N. Chandra, Phase transformation, improved ferroelectric and magnetic properties of (1–x)BiFeO3–xPb(Zr052Ti048)O3 solid solutions. J. Appl Phy. 10(1063/1), 4882067 (2014)

    Google Scholar 

  4. M. Sufyan, S. Atiq, S.K. Abbas, M. Younis, S. Riaz, S. Naseem, Magnetically driven robust polarization in (1–x)BiFeO3–xPbTiO3 multiferroic composites. Mater. Lett. 238, 10–12 (2019)

    Article  Google Scholar 

  5. Y. Slimani, R. Sivakumar, S.S. Meena, R. Vignesh, G. Yasin, E. Hannachi, B. Özçelik, BaTiO3/(Co08Ni01Mn01Fe19Ce01O4) x composites: Analysis of the effect of Co0.8Ni0.1Mn0.1Fe19Ce0.1O4 doping at different concentrations on the structural, morphological optical magnetic and magnetoelectric coupling properties of BaTiO3. Ceram Int 48(20), 30499–30509 (2022)

    Article  Google Scholar 

  6. Y. Slimani, S.E. Shirsath, E. Hannachi, M.A. Almessiere, M.M. Aouna, N.E. Aldossary, I. Ercan, (BaTiO3)1–x +(Co05Ni0.5Nb006Fe194O4)x nanocomposites: Structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc 104(11), 5648–5658 (2021)

    Article  Google Scholar 

  7. V.F. Freitas, L.F. Cótica, I.A. Santos, D. Garcia, J.A. Eiras, Synthesis and multiferroism in mechanically processed BiFeO3–PbTiO3 ceramics. J. Eur. Ceram. Soc. 31, 2965–2973 (2011)

    Article  Google Scholar 

  8. X. Tang, J. Dai, X. Zhu, W. Song, Y. Sun, Magnetic annealing effects on multiferroic BiFeO3/CoFe2O4 bilayered films. J. Alloy. Compd. 509, 4748–4753 (2011)

    Article  Google Scholar 

  9. Y. Wu, J.-G. Wan, C. Huang, Y. Weng, S. Zhao, J.-M. Liu, G. Wang, Strong magnetoelectric coupling in multiferroic BiFeO3–Pb(Zr052Ti048)O3 composite films derived from electrophoretic deposition. Appl. Phy. Lett. 10(1063/1), 3028089 (2008)

    Google Scholar 

  10. N. Adhlakha, K.L. Yadav, M. Truccato, P. Manjusha, A. Rajak, E.V. Battiato, Multiferroic and magnetoelectric properties of BiFeO3 -CoFe2O4 -poly(vinylidene-flouride) composite films. Eur. Polymer J. 91, 100–110 (2017)

    Article  Google Scholar 

  11. S. Sharma, J.M. Siqueiros, G. Srinet, S. Kumar, B. Prajapati, R.K. Dwivedi, Structural, electrical, optical and dielectric properties of sol-gel derived (1–x)BiFeO3–(x)Pb(Zr0.52Ti048)O3 novel multiferroics materials. J. Alloys. Compound 732, 666–673 (2018)

    Article  Google Scholar 

  12. X. Jiang, Y. Jiang, J. Chen, D. Hu, J. Xing, B. Wang, J. Cheng, Structural and multiferroic characterization of BiFeO3-PbTiO3-based solid solution with an extra phase. Ceram. Int. 44, 23315–23319 (2018)

    Article  Google Scholar 

  13. C. Lan, Y. Jiang, S. Yang, Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J. Mater. Sci. 46, 734–738 (2010)

    Article  ADS  Google Scholar 

  14. G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl Phy Lett. 10(1063/1), 2266992 (2006)

    Google Scholar 

  15. G. Schileo, L. Luisman, A. Feteira, M. Deluca, K. Reichmann, Structure–property relationships in BaTiO3–BiFeO3–BiYbO3 ceramics. J. Eur. Ceram. Soc. 33, 1457–1468 (2013)

    Article  Google Scholar 

  16. S.R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy, A.O. Adeyeye, Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process. Appl Phy Lett. 10(1063/1), 2430652 (2007)

    Google Scholar 

  17. X.-H. Liu, Z. Xu, X.-Y. Wei, Z.-H. Dai, X. Yao, Ferroelectric, Ferromagnetic and magnetoelectric characteristics of 0.9(07BiFeO3–03BaTiO3)-01CoFe2O4 Ceramic Composite. J. Am Ceram. Soc 93, 2975–2977 (2010)

    Article  Google Scholar 

  18. H. Liu, Y. Sun, Substantially enhanced ferroelectricity in Ti doped BiFeO3films. J. Phys. D Appl. Phys. 40, 7530–7533 (2007)

    Article  ADS  Google Scholar 

  19. V.A. Khomchenko, J.A. Paixão, V.V. Shvartsman, P. Borisov, W. Kleemann, D.V. Karpinsky, A.L. Kholkin, Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scripta Mater. 62, 238–241 (2010)

    Article  Google Scholar 

  20. M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, Magnetic and structural properties of BiFe1−xMnxO3. J. Magn. Magn. Mater. 310, 1177–1179 (2007)

    Article  ADS  Google Scholar 

  21. Q. Hang, Z. Xing, X. Zhu, M. Yu, Y. Song, J. Zhu, Z. Liu, Dielectric properties and related ferroelectric domain configurations in multiferroic BiFeO3–BaTiO3 solid solutions. Ceram. Int. 38, S411–S414 (2012)

    Article  Google Scholar 

  22. M. Sufyan et al., Multiferroic characterization of 3-phase (1–x)(07BiFeO3–03CoFe2O4)-xPb(Zr, Ti)O3 composites with magnetically driven polarization. J. Alloys Compounds 849, 156681 (2020)

    Article  Google Scholar 

  23. P. Kumar, M. Kar, Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J. Alloy. Compd. 584, 566–572 (2014)

    Article  Google Scholar 

  24. X.-M. Liu, Fu. Shao-Yun, C.-J. Huang, Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Mater. Sci. Eng., B 121(3), 255–260 (2005)

    Article  Google Scholar 

  25. K. Singh et al., Dielectric and magnetic properties of (BiFeO3)1− x-(PbTiO3)x ferromagnetoelectric system. Solid State Commun. 148(1–2), 18–21 (2008)

    Article  ADS  Google Scholar 

  26. V. Mishra, V. Kumar, S. Singh, Structural, optical and magnetic properties of multiferroic (1–x)BiFeO3-xPbTiO3 nanoparticles. J. Alloy. Compd. 683, 133–138 (2016)

    Article  Google Scholar 

  27. R. Zuo et al., Influences of dopants on BiFeO3–PbTiO3 ferroelectric ceramics. Mater. Chem. Phys 113(1), 361–364 (2009)

    Article  Google Scholar 

  28. S.K. Khalid, G.M. Abbas, S. Mustafa, S.S. Atiq, M.S. Hussain, S. Anwar, Naseem, analysis of dielectric dispersion and magnetoelectric coupling in BiFeO3 and NiFe2O4 nanocomposites. Ceram. Int. 45, 24453–24460 (2019)

    Article  Google Scholar 

  29. T. Kanai, S.-I. Ohkoshi, K.J.J.o.P. Hashimoto, 2003 Co Solids Magnetic, electric and optical functionalities of (PLZT)x-(BiFeO3)1−x ferroelectric–ferromagnetic thin films, 64: 391–397.

  30. K. Singh et al., Dielectric and magnetic properties of (BiFeO3)1–x (PbTiO3)x ferromagnetoelectric system. Solid State Commun. 148(1–2), 18–21 (2008)

    Article  ADS  Google Scholar 

  31. B. Dhanalakshmi et al., Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics. J. Alloy. Compd. 676, 193–201 (2016)

    Article  Google Scholar 

  32. A. Khalid et al., Sm-mediated dielectric characteristics and tunable magneto-electric coefficient of 0.5Bi1-xSmxFe0.95Mn0.05O3–0.5PbTiO3 composites. Ceramics Int 45(6), 7690–7695 (2019)

    Article  Google Scholar 

  33. N. Adhlakha, K.L. Yadav, R. Singh, Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4−0.7BiFeO3 ceramics. Smart Mater Struct (2014). https://doi.org/10.1088/0964-1726/23/10/105024

    Article  Google Scholar 

  34. E. İzci, A. İzci, Dielectric behavior of the catalyst zeolite NaY. Turk. J. Chem. 31(5), 523–530 (2007)

    Google Scholar 

  35. P. Lunkenheimer et al., Origin of apparent colossal dielectric constants. Phy. Rev B 66(5), 052105 (2002)

    Article  ADS  Google Scholar 

  36. K. Chakrabarti et al., Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method. J. App. Phy 110(10), 103905 (2011)

    Article  ADS  Google Scholar 

  37. Q. Ke et al., Origin of the enhanced polarization in La and Mg co-substituted BiFeO3 thin film during the fatigue process. Appl Phy Lett 100(4), 042902 (2012)

    Article  ADS  Google Scholar 

  38. S. Chandarak et al., Dielectric properties of BaTiO3-modified BiFeO3 ceramics. Ferroelectrics 410(1), 75–81 (2010)

    Article  ADS  Google Scholar 

  39. T. Kanai, S.-I. Ohkoshi, K. Hashimoto, Magnetic, electric, and optical functionalities of (PLZT)x-(BiFeO3)1–x ferroelectric–ferromagnetic thin films. J. Phys. Chem. Solids 64(3), 391–397 (2003)

    Article  ADS  Google Scholar 

  40. K. Kaswan et al., Crystal structure refinement, enhanced magnetic and dielectric properties of Na0.5Bi05TiO.3 modified Bi0.8Ba0.2FeO3 ceramics. Ceramics Int. 43(5), 4622–4629 (2017)

    Article  Google Scholar 

  41. N. Wang et al., "Multiferroic properties of modified BiFeO3− PbTiO3-based ceramics: random-field induced release of latent magnetization and polarization. Phy. Rev B (2005). https://doi.org/10.1103/PhysRevB.72.104434

    Article  Google Scholar 

  42. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Investigation of structural morphological optical magnetic and dielectric properties of (1–x) BaTiO3/xSr092Ca004Mg004Fe12O19 composites. J. Mag. Mag. Mater. 510, 166933 (2020)

    Article  Google Scholar 

  43. M. Pal, A. Srinivas, S. Asthana, Enhanced magneto-electric properties and magnetodielectric effect in lead-free (1–x)0.94Na0.5Bi05TiO3–0.06BaTiO3–xCoFe2O4 particulate composites. J. Alloys Compounds 900, 163487 (2022)

    Article  Google Scholar 

  44. M. Sufyan, Z. Lu, Z. Chen, X. Wang, J. Gao, S. Atiq, Hot-pressed (1–x)[0.9 (0.3 CoFe2O4–0.7 BiFeO3)-0.1 Pb (Zr0. 52, Ti0. 48) O3]-x poly (vinylidene difluoride) multiferroic composites with magnetically driven polarization. J. Mater. Sci. Mater. Electro 33(8), 4806–4818 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Science and Technology Planning Project of Guangdong Province (No. 2020B0109380001, No.2019B040403004, No.2019B040403006) and Science and Technology Major Project of Guangxi (No.AA18118034). We also acknowledge the technical support from the Centre of Excellence in Solid State Physics, University of the Punjab Lahore, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

MS: Concept, experiments, manuscript writing, review. ZL: Project management and review. ZC: Project management and review. XW: Experiments. MW: review, experiment

Corresponding author

Correspondence to Zhenya Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufyan, M., Lu, Z., Chen, Z. et al. Magnetoelectric response of 3-phase (1−x)[0.7BiFeO3–0.3CoFe2O4]–xPbTiO3 multiferroic ceramic composites. Appl. Phys. A 129, 9 (2023). https://doi.org/10.1007/s00339-022-06286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06286-2

Keywords

Navigation