Skip to main content
Log in

Structural, thermal, optical and dielectric properties of piezoelectric Ba0.8Ca0.2TiO3/polyvinyl alcohol nanocomposite films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study reports the effect of Ba0.8Ca0.2TiO3 (BCT) nanoparticles incorporation on the structural, thermal, optical, and dielectric properties of the nanocomposite films with a polyvinyl alcohol (PVA) polymer matrix. To develop high-performance dielectric materials, we report for the first time a novel strategy for elaborating stable aqueous nanosized BCT suspensions by using a polyelectrolyte (PAA–NH4) dispersant whose concentration was about 2.0 wt% in a basic medium, which was thereafter dispersed in PVA under ultrasonication, which has demonstrated its ability to perform uniform PVA/BCT suspensions. The obtained materials were then deposited onto the substrate by using a spin coating technique to finally obtain BCT/PVA nanocomposites. The BCT weight fraction was in the range of 1–5 wt%. The X-ray diffraction analysis of BCT revealed a tetragonal phase with a P4mm space group. Furthermore, the XRD analysis of BCT/PVA nanocomposites emphasized a significant alteration of the PVA structure owing to the interfacial interaction between the polymer matrix and the BCT nanofillers. The micrographs of the nanocomposites confirmed the very good dispersion of BCT nanoparticles in the PVA polymer matrix. Thermogravimetric analyses of pure and doped PVA were performed in order to determine the effect of BCT on the thermal stability of ceramic-polymer nanocomposite films. Likewise, differential scanning calorimetry analysis showed that the incorporation of BCT nanoparticles had little influence on the glass transition temperatures (Tg) of different samples. The ultraviolet–visible spectroscopy revealed that the gap energy of the nanocomposites decreased as the BCT nanoparticles concentration increased in the polymer matrix. It went from 4.18 eV for pure PVA to 4.11 eV for 5wt%. Moreover, the addition of BCT nanoparticles into the PVA matrix has raised the dielectric constant over 3.84 times, reaching 7.99 for PVA/BCT-5wt% at 1 kHz at room temperature. Therefore, these PVA/BCT nanocomposites are potential flexible, high-performance dielectric materials for electronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Ramos, A. Millan, F. Palacio, Polymer 41, 8461–8464 (2000)

    Article  Google Scholar 

  2. T. Hanemann, D.V. Szabo, Materials 3, 3468–3517 (2010)

    Article  ADS  Google Scholar 

  3. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57, 660–723 (2012)

    Article  Google Scholar 

  4. T. Lee, K.W. Kwok, H.L. Li, H.L.W. Chan, Sensor Actuat. A 150, 267–271 (2009)

    Article  Google Scholar 

  5. D. Zhou, K.H. Lam, Y. Chen, Q. Zhang, Y.C. Chiu, H. Luo, J. Dai, H.L.W. Chan, Sensor Actuat. A 182, 95–100 (2012)

    Article  Google Scholar 

  6. S. George, M.T. Sebastian, Compos. Sci. Technol. 69, 1298–1302 (2009)

    Article  Google Scholar 

  7. Q. Chen, R.Y. Hong, W.G. Feng, J. Alloys Compd. 609, 274–283 (2014)

    Article  Google Scholar 

  8. L. Shaohui, Z. Jiwei, W. Jinwen, X. Shuangxi, Z. Wenqin, A.C.S. Appl, Mater. Interfaces 6, 1533–1540 (2014)

    Article  Google Scholar 

  9. L. Gao, J. He, J. Hu, Y. Li, J. Phys. Chem. C 118, 831–838 (2014)

    Article  Google Scholar 

  10. R.I. Mahdi, W.C. Gan, N.A. Halim, T.S. Velayutham, W.H. Abd, Majid. Ceram. Int. 41, 13836–13843 (2015)

    Article  Google Scholar 

  11. S.K. Sharma, J. Prakash, J. Bahadur, M. Sahu, S. Mazumder, P.K. Pujari, European Polymer J. 84, 100–110 (2016)

    Article  Google Scholar 

  12. D. Feldman, J. Compos. Sci. 4, 175 (2020)

    Article  Google Scholar 

  13. M. Aslam, M.A. Kalyar, Z.A. Raza, Polym. Eng. Sci. 58, 2119–2132 (2018)

    Article  Google Scholar 

  14. M. Aslam, M.A. Kalyar, Z.A. Raza, Polym. Bull. 76, 73–86 (2019)

    Article  Google Scholar 

  15. S.-Y. Lee, D.J. Mohan, I.-A. Kang, G.-H. Doh, S. Lee, S.O. Han, Fibers and Polymers 10, 77–82 (2009)

    Article  Google Scholar 

  16. A. Pangon, S. Saesoo, N. Saengkrit, U. Ruktanonchai, V. Intasanta, Carbohyd. Polym. 138, 156–165 (2016)

    Article  Google Scholar 

  17. F. Chi, S. Hu, J. Xiong, X. Wang, SCIENCE CHINA Chem. 56, 1495–1503 (2013)

    Article  ADS  Google Scholar 

  18. R. Hou, G. Zhang, G. Du, D. Zhan, Y. Cong, Y. Cheng et al., Colloids Surf., B 103, 318–325 (2013)

    Article  Google Scholar 

  19. W. Chen, X. Tao, P. Xue, X. Cheng, Appl. Surf. Sci. 252, 1404–1409 (2005)

    Article  ADS  Google Scholar 

  20. Y. Huang, Y. Zheng, W. Song, Y. Ma, J. Wu, L. Fan, Compos. A Appl. Sci. Manuf. 42, 1398–1405 (2011)

    Article  Google Scholar 

  21. J. Zhang, J. Wang, T. Lin, C.H. Wang, K. Ghorbani, J. Fang et al., Chem. Eng. J. 237, 462–468 (2014)

    Article  Google Scholar 

  22. Z. Peng, L.X. Kong, Polym. Degrad. Stab. 92, 1061–1071 (2007)

    Article  Google Scholar 

  23. J. Li, Y. Li, Y. Song, S. Niu, N. Li, Ultrason. Sonochem. 39, 853–862 (2017)

    Article  Google Scholar 

  24. A. Kaboorani, B. Riedl, Int. J. Adhes. Adhes. 31, 605–611 (2011)

    Article  Google Scholar 

  25. A.A. Rowe, M. Tajvidi, D.J. Gardner, J. Therm. Anal. Calorim. 126, 1371–1386 (2016)

    Article  Google Scholar 

  26. M.K. Mandal, S.B. Sant, P.K. Bhattacharya, Colloids Surf., A 373, 11–21 (2011)

    Article  Google Scholar 

  27. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, Compos. B Eng. 47, 314–319 (2013)

    Article  Google Scholar 

  28. G. Sahu, M. Das, M. Yadav, B.P. Sahoo, J. Tripathy, Polymers 12(2), 374 (2020)

    Article  Google Scholar 

  29. S. Choudhary, J. Mater. Sci.: Mater. Electron. 29, 10517–10534 (2018)

    Google Scholar 

  30. M.Q. Al-Gunaid, A.M. Saeed, N.K. Subramani, B.S. Madhukar, J. Mater. Sci.: Mater. Electron. 28, 8074–8086 (2017)

    Google Scholar 

  31. H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, Comput. Mech. 53(5), 1047–1071 (2014)

    Article  MathSciNet  Google Scholar 

  32. B. Mortazavi, M. Silani, E. V. Podryabinkin, T. Rabczuk, X. Zhuang, and A. V. Shapeev, Advanced Materials, 2021, 33(35), 2102807, (2021)

  33. N. Vu-Bac, T. Lahmer, X. Zhuang, T. Nguyen-Thoi, T. Rabczuk, Adv. Eng. Softw. 100, 19–31 (2016)

    Article  Google Scholar 

  34. P.K. Panda, Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44(19), 5049–5062 (2009)

    Article  ADS  Google Scholar 

  35. M.H. Khedhri, N. Abdelmoula, H. Khemakhem, R. Douali, F. Dubois, J. App. Phys. 125, 193 (2019)

    Article  ADS  Google Scholar 

  36. H.Y. Tian, Y. Wang, J. Miao, H.L.W. Chan, C.L. Choy, J. Alloys Compd. 431, 197–202 (2007)

    Article  Google Scholar 

  37. F. Boujelben, F. Bahri, C. Bouday, A. Maalej, H. Khemakhem, A. Simon, M. Maglione, J. Alloys Compd. 481, 559–562 (2009)

    Article  Google Scholar 

  38. Q. Xu, X.F. Zhang, Y.H. Huang, W. Chen, H.X. Liu, M. Chen, B.H. Kim, J. Alloys Compd. 488, 448–453 (2009)

    Article  Google Scholar 

  39. J.Y. Chen, Y.W. Tseng, C.L. Huang, J. Alloys Compd. 494, 205–209 (2010)

    Article  Google Scholar 

  40. D. Fu, M. Itoh, S. Koshihara, Appl. Phys. Lett. 93, 012904, (2008).

  41. R.S. Silva, A.C. Hernandes, J.-C. M’Peko, Mater. Res. 15, 522–529 (2012)

    Article  Google Scholar 

  42. G. Nasar, M.S. Khan, U. Khalil, J. Pak. Mater. Soc. 3(2), 67 (2009)

    Google Scholar 

  43. A. Hassen, A. M. El Sayed, W. M. Morsi, S. El-Sayed, J. Appl. Phys. 112, 093525, (2012)

  44. S.-Y. Lee, D.J. Mohan, I.-A. Kang, G.-H. Doh, S. Lee, S.O. Han, Fibers and Polymers 10(1), 77–82 (2009)

    Article  Google Scholar 

  45. G.P. Baeza, C. Dessi, S. Costanzo, D. Zhao, S. Gong, A. Alegria, R.H. Colby, M. Rubinstein, D. Vlassopoulos, S.K. Kumar, Nature Commun. 7(11368), 1–6 (2016)

    Google Scholar 

  46. M.F. Parveen, S. Umapathy, V. Dhanalakshmi, R. Anbarasan, J. Appl. Polym. Sci. 118, 1728 (2010)

    Google Scholar 

  47. M.Y.F. Elzayat, S. El-Sayed, H.M. Osman, M. Amin, Polym. Eng. Sci. 52, 1945 (2012)

    Article  Google Scholar 

  48. N.A. Peppas, E.W. Merrill, J. Appl. Polym. Sci. 20, 1457 (1976)

    Article  Google Scholar 

  49. R.F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, S.P. Nayak, B. Poojary, Polymer 47, 3591 (2006)

    Article  Google Scholar 

  50. A.N. Frone, D.M. Panaitescu, D. Donescu, C.I. Spataru, C. Radovici, R. Trusca, R. Somoghi, BioResources 6, 478 (2011)

    Google Scholar 

  51. L. Jiang, X.-P. Shen, J.-L. Wu, K.-C. Shen, J. Appl. Polym. Sci. 118, 275 (2010)

    Article  Google Scholar 

  52. S.K. Sharma, J. Prakash, P.K. Pujari, Phys. Chem. Chem. Phys. 17, 29201–29209 (2015)

    Article  Google Scholar 

  53. S.K. Sharma, J. Prakash, J. Bahadur, K. Sudarshan, P. Maheshwari, S. Mazumder, P.K. Pujari, Phys. Chem. Chem. Phys. 16, 1399–1408 (2014)

    Article  Google Scholar 

  54. H. Windlass, P.M. Raj, D. Balaraman, S.K. Bhattacharya, R.R. Tummala, IEEE Trans. on Elect. Packaging Manufacturing. 26, 100–105 (2003)

    Article  Google Scholar 

  55. A.I. Barzic, M. Soroceanu, R. Rotaru, V. Harabagiu, R.C. Ciobanu, Materiale Plastice 57(1), 1–7 (2020)

    Article  Google Scholar 

  56. A. Mohamed Saat, M. R. Johan, Hindawi Publishing Corporation International Journal of Polymer Science,495875, (2014)

  57. J.H. Choi, S.W. Ko, B.C. Kim, J. Blackwell, W.S. Lyoo, Macromolecules 34(9), 2964–2972 (2001)

    Article  ADS  Google Scholar 

  58. N. Khalifa, A. Souissi, I. Attar, M. Daoudi, R. Chtourou, Opt. Laser Technol. 54, 335–338 (2013)

    Article  ADS  Google Scholar 

  59. P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.-J. Pan, S.R. Marder, ACS Nano 3(9), 2581–2592 (2009)

    Article  Google Scholar 

  60. H.Y. Wu, A.J. Gu, G.Z. Liang, J. Mater. Chem. 21, 14838–14848 (2011)

    Article  Google Scholar 

  61. T.S. Soliman, M.F. Zaki, M.M. Hessien, Sh. I. Elkalashy, Optical Materials 111, 110648, (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hassen Khedhri.

Ethics declarations

Conflict of interest

No funds, grants, or other support was received and no one of the authors listed in this manuscript dispose of any conflict of interest through this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedhri, M.H., Lajnef, M., Salhi, S. et al. Structural, thermal, optical and dielectric properties of piezoelectric Ba0.8Ca0.2TiO3/polyvinyl alcohol nanocomposite films. Appl. Phys. A 128, 316 (2022). https://doi.org/10.1007/s00339-022-05432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05432-0

Keywords

Navigation