Skip to main content
Log in

Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanocellulose was prepared by acid hydrolysis of microcrystalline cellulose (MCC) at different hydrobromic acid (HBr) concentrations. Polyvinyl alcohol (PVA) composite films were prepared by the reinforcement of nanocellulose into a PVA matrix at different filler loading levels and subsequent film casting. Chemical characterization of nanocelluloses was performed for the analysis of crystallinity (Xc), degree of polymerization (DP), and molecular weight (Mw). The mechanical and thermal properties of the nanocellulose reinforced PVA films were also measured for tensile strength and thermogravimetric analysis (TGA). The acid hydrolysis decreased steadily the DP and Mw of MCC. The crystallinity of MCC with 1.5 M and 2.5 M HBr showed a significant increase due to the degradation of amorphous domains in cellulose. Higher crystalline cellulose showed the higher thermal stability than MCC. From X-ray diffraction (XRD) analysis, nanocellulose samples showed the higher peak intensity than MCC cases. Reduction of MCC particle by acid hydrolysis was clearly observed from scanning electron microscope (SEM) images. The tensile and thermal properties of PVA composite films were significantly improved with the increase of the nanocellulose loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nishino, I. Matsuda, and K. Hirao, Macromolecules, 37, 7683 (2004).

    Article  CAS  Google Scholar 

  2. S. J. Eichhorn, C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, and A. Dufresne, J. Mater. Sci., 36, 2107 (2001).

    Article  CAS  Google Scholar 

  3. D. Fengel and G. Wegner, “Wood-Chemistry, Ultrastructure, Reactions”, Walter de Gruyter, Berlin, New York, 1989.

    Google Scholar 

  4. D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Angew Chem. Int. Ed., 44, 2 (2005).

    Article  Google Scholar 

  5. T. Zimmerman, E. Pöhler, and P. Schwaller, Adv. Eng. Mater., 12, 1156 (2005).

    Article  Google Scholar 

  6. K. Oksmann and M. Sain, “Cellulose Nanocomposites-Processing, Characterization and Properties”, American Chemical Society, Washington, DC, 2006.

    Google Scholar 

  7. T. Nishino, K. Takano, and K. J. Nakamae, Polym. Sci. B, 33, 1647 (1995).

    Article  CAS  Google Scholar 

  8. A. S. Azizi-Samir, F. Alloin, M. Paillet, and A. Dufresne, Macromolecules, 37, 4313 (2004).

    Article  Google Scholar 

  9. H. Takagi and A. Asano, Compos. Part A, 39, 685 (2008).

    Article  Google Scholar 

  10. R. F. Nickerson and J. A. Habrle, Ind. Eng. Chem., 39, 1507 (1947).

    Article  CAS  Google Scholar 

  11. B. G. Ranby, Tappi, 35, 53 (1952).

    CAS  Google Scholar 

  12. V. Favier, H. Chanzy, and J. Y. Cavaille, Macromolecules, 28, 6365 (1995).

    Article  CAS  Google Scholar 

  13. M. N. Angles and A. Dufresne, Macromolecules, 35, 2190 (2002).

    Article  Google Scholar 

  14. A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci., 97, 2014 (2005).

    Article  CAS  Google Scholar 

  15. K. E. Strawhwcker and E. Manias, Chem. Mater., 12, 2943 (2000).

    Article  Google Scholar 

  16. H. Matsuyama and J. F. Young, Chem. Mater., 11, 16 (1999).

    Article  CAS  Google Scholar 

  17. E. Tadd, A. Zeno, M. Zubris, N. Dan, and R. Tannenbaum, Macromolecules, 36, 6497 (2003).

    Article  CAS  Google Scholar 

  18. Y. Li, K. G. Neoh, and E. T. Kang, Polymer, 45, 8779 (2004).

    Article  CAS  Google Scholar 

  19. T. Ke and X. S. Sun, J. Polym. Environ., 11, 7 (2003).

    Article  CAS  Google Scholar 

  20. L. Segal, J. Creely, A. Martin, and C. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  21. E. H. Immergut, B. G. Ranby, and H. Mark, Ind. Eng. Chem., 45, 2383 (1953).

    Google Scholar 

  22. A. Alemdar and M. Sain, Bioresou. Technol., 99, 1664 (2008).

    Article  CAS  Google Scholar 

  23. S. Y. Lee, H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim, and J. N. Lee, Compos. Struct., 65, 459 (2004).

    Article  Google Scholar 

  24. V. Favier, R. Dendievel, G. Canova, J. Y. Cavaille, and P. Gilormini, Acta Mater., 45, 1557 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SY., Mohan, D.J., Kang, IA. et al. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers Polym 10, 77–82 (2009). https://doi.org/10.1007/s12221-009-0077-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-009-0077-x

Keywords

Navigation