Skip to main content
Log in

A computational library for multiscale modeling of material failure

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present an open-source software framework called PERMIX for multiscale modeling and simulation of fracture in solids. The framework is an object oriented open-source effort written primarily in Fortran 2003 standard with Fortran/C++ interfaces to a number of other libraries such as LAMMPS, ABAQUS, LS-DYNA and GMSH. Fracture on the continuum level is modeled by the extended finite element method (XFEM). Using several novel or state of the art methods, the piece software handles semi-concurrent multiscale methods as well as concurrent multiscale methods for fracture, coupling two continuum domains or atomistic domains to continuum domains, respectively. The efficiency of our open-source software is shown through several simulations including a 3D crack modeling in clay nanocomposites, a semi-concurrent FE-FE coupling, a 3D Arlequin multiscale example and an MD-XFEM coupling for dynamic crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ju JW, Lee HK (2001) A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites. Int J Solids Struct 38:6307–6332

    Google Scholar 

  2. Abaqus 6.11 standard user’s manual, DASSAULT SYSTEMES, (2011)

  3. Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for large data visualization. Vis Handb 717:731

    Google Scholar 

  4. Akin JE (1999) Object oriented programming via fortran 90. Eng Comput 16(1):26–48

    MATH  Google Scholar 

  5. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. general method. J Chem Phys 31:459

    MathSciNet  Google Scholar 

  6. Cid Alfaro MV, Suiker ASJ, Verhoosel CV, de Borst R (2010) Numerical homogenization of cracking processes in thin fibre-epoxy layers. Eur J Mech 29(2):119–131

    Google Scholar 

  7. Allen MP, Tildesley DJ (1989) Comput Simul Liq, vol 18. Oxford University Press, Oxford

    Google Scholar 

  8. Amestoy P, Duff I, LExcellent J-Y, Koster J (2001) Mumps: a general purpose distributed memory sparse solver. Appl Parallel Comput 1947:121–130

    Google Scholar 

  9. Aubertin P, Réthoré J, de Borst R (2010) A coupled molecular dynamics and extended finite element method for dynamic crack propagation. Int J Numer Methods Eng 81(1):72–88

    MATH  Google Scholar 

  10. Aubertin P, Rthor J, de Borst R (2009) Energy conservation of atomistic/continuum coupling. Int J Numer Methods Eng 78(11):1365–1386

    MATH  Google Scholar 

  11. Aurenhammer F (1991) Voronoi diagramsa survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405

    Google Scholar 

  12. Badia S, Parks M, Bochev P, Gunzburger M, Lehoucq R (2008) On atomistic-to-continuum coupling by blending. Multiscale Model Simul 7(1):381–406

    MATH  MathSciNet  Google Scholar 

  13. Bangerth W, Hartmann R, Kanschat G (2007) General-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24

    MathSciNet  Google Scholar 

  14. Bazant ZP (2010) Can multiscale-multiphysics methods predict softening damage and structural failure. Int J Multiscale Comput Eng 8(1):61–67

    Google Scholar 

  15. Beazley DM et al. (1996) Swig: an easy to use tool for integrating scripting languages with c and c++, Proceedings of the 4th USENIX Tcl/Tk workshop, pp 129–139.

  16. Bellevue W (2005) Tecplot user’s manual. Amtec Engineering, Inc., Bellevue

    Google Scholar 

  17. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    MATH  MathSciNet  Google Scholar 

  18. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    MATH  Google Scholar 

  19. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  20. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free galerkin methods. Eng Fract Mech 51(2):295–315

    Google Scholar 

  21. Belytschko T, Loehnert S, Song J-H (2008) Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int J Numer Methods Eng 73(6):869–894

    MATH  MathSciNet  Google Scholar 

  22. Belytschko T, Song J-H (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81(5):537–563

    MATH  MathSciNet  Google Scholar 

  23. Ben RG, Dhia H (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62:1442–1462

    MATH  Google Scholar 

  24. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, New York

    MATH  Google Scholar 

  25. Bordas S, Nguyen VP, Dunant C, Nguyen-Dang H, Guidoum A (2007) An extended finite element library. Int J Numer Methods Eng 71(6):703–732. doi:10.1002/nme.1966

    MATH  Google Scholar 

  26. Bordas S, Rabczuk T, Zi G (2008) Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng Fract Mech 75(5):943–960

    Google Scholar 

  27. Bouchard PO, Bay F, Chastel Y (2003) Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput Methods Appl Mech Eng 192(35):3887–3908

    MATH  Google Scholar 

  28. Chivers I, Sleightholme J (2010) Compiler support for the fortran 2003 and 2008 standards revision 6 ACM SIGPLAN Fortran Forum. ACM 29:26–34

    Google Scholar 

  29. Christman T, Needleman A, Suresh S (1989) An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall 37(11):3029–3050

    Google Scholar 

  30. Crisfield MA (1983) An arc-length method including line searches and accelerations. Int J Numer Methods Eng 19(9):1269–1289

    MATH  MathSciNet  Google Scholar 

  31. Dagum L, Menon R (1998) Openmp: an industry standard api for shared-memory programming. Computl Sci Eng IEEE 5(1):46–55

    Google Scholar 

  32. Dascalu C, Bilbie G, Agiasofitou EK (2008) Damage and size effects in elastic solids: a homogenization approach. Int J Solids Struct 45(2):409–430

    MATH  Google Scholar 

  33. Datta DK, Picu RC, Shephard MS (2004) Composite grid atomistic continuum method: an adaptive approach to bridge continuum with atomistic analysis. Int J Multiscale Comput Eng 2:3

    Google Scholar 

  34. Decyk VK, Norton CD, Szymanski BK (1997) Expressing object-oriented concepts in fortran 90. ACM SIGPLAN Fortran Forum 16:13–18

    Google Scholar 

  35. Eckardt S, Könke C (2008) Adaptive damage simulation of concrete using heterogeneous multiscale models. J Algorithms Comput Technol 2(2):275–297

    Google Scholar 

  36. Epperly TGW, Gary K, Tamar D, Dietmar E, Jim L, Adrian P, Scott K (2012) High-performance language interoperability for scientific computing through babel. Int J High Perform Comput Appl 26(3):260–274

    Google Scholar 

  37. Feyel F, Chaboche J-L (2000) \({FE}^2\) multiscale approach for modeling the elastoviscoplastic behavior of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    MATH  Google Scholar 

  38. Fish J, Yuan Z (2005) Multiscale enrichment based on partition of unity. Int J Numer Methods Eng 62(10):1341–1359

    MATH  Google Scholar 

  39. Fish J, Nuggehally MA, Shephard MS, Picu CR, Badia S, Parks ML, Gunzburger M (2007) Concurrent atc coupling based on a blend of the continuum stress and the atomistic force. Comput Methods Appl Mech Eng 196(45–48):4548–4560

    MATH  MathSciNet  Google Scholar 

  40. Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148(1–2):53–73

    MATH  MathSciNet  Google Scholar 

  41. Fish J, Qing Y (1999) Computational damage mechanics for composite materials based on mathematical homogenization. Int J Numer Methods Eng 45(11):1657–1679

    MATH  Google Scholar 

  42. Forde BWR, Stiemer SF (1987) Improved arc length orthogonality methods for nonlinear finite element analysis. Comput Struct 27(5):625–630

    MATH  Google Scholar 

  43. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    MATH  MathSciNet  Google Scholar 

  44. Ghosh S, Lee K, Moorthy S (1996) Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model. Comput Methods Appl Mech Eng 132(1–2):63–116

    MATH  Google Scholar 

  45. Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385

    MATH  Google Scholar 

  46. Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534

    Google Scholar 

  47. Gitman IM, Askes H, Sluys LJ (2008) Coupled-volume multi-scale modelling of quasi-brittle material. Eur J Mech A 27(3):302–327

    MATH  Google Scholar 

  48. Gracie R, Belytschko T (2009) Concurrently coupled atomistic and xfem models for dislocations and cracks. Int J Numer Methods Eng 78(3):354–378

    MATH  MathSciNet  Google Scholar 

  49. Gracie R, Belytschko T (2011) An adaptive concurrent multiscale method for the dynamic simulation of dislocations. Int J Numer Methods Eng 86(4–5):575–597

    MATH  Google Scholar 

  50. Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198

    MATH  MathSciNet  Google Scholar 

  51. Guidault PA, Allix O, Champaney L, Navarro JP (2007) A two-scale approach with homogenization for the computation of cracked structures. Comput Struct 85(17–18):1360–1371

    MathSciNet  Google Scholar 

  52. Hashin Z (1983) Analysis of composite materials. J Appl Mech 50(2):481–505

    MATH  Google Scholar 

  53. Hettich T, Hund A, Ramm E (2008) Modeling of failure in composites by x-fem and level sets within a multiscale framework. Comput Methods Appl Mech Eng 197(5):414–424

    MATH  Google Scholar 

  54. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95

    Google Scholar 

  55. Hirschberger CB, Sukumar N, Steinman P (2008) Computational homogenization of material layers with micromorphic mesostructure. Philos Mag 88(30–32):3603–3631

    Google Scholar 

  56. Hoover WG (2006) Smooth particle applied mechanics: the state of the art. World Scientific Publishing Co. Inc., Hackensack

    Google Scholar 

  57. Horstemeyer MF (2010) Multiscale modeling: a review. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational, chemistry. Springer, Dordrecht, pp 87–135

    Google Scholar 

  58. Hughes Thomas JR, Cottrell John A (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

    Google Scholar 

  59. Ibrahimbegovi A, Markovi D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192(28–30):3089–3107

    Google Scholar 

  60. Intel, Math kernel library. http://software.intel.com/en-us/intel-mkl. Accessed 03 Dec 2013

  61. Jain JR, Ghosh S (2009) Damage evolution in composites with a homogenization-based continuum damage mechanics model. Int J Damage Mech 18(6):533–568

    Google Scholar 

  62. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085

    Google Scholar 

  63. Kohlhoff S, Gumbsch P, FischmeisteR HF (1991) Crack propagation A in. b.c.c. crystals studied with a combined finite-element and atomistic model. Philos Mag A 64:851–878

    Google Scholar 

  64. Kouznetsova V. (2002) Computational homogenization for the multi-scale analysis of multi-phase materials, PhD Thesis, Netherlands Institute for Metals Research, The Netherlands

  65. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48

    MATH  Google Scholar 

  66. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48):5525–5550

    MATH  Google Scholar 

  67. Kulkarni MG, Geubelle PH, Matouš K (2009) Multi-scale modeling of heterogeneous adhesives: effect of particle decohesion. Mech Mater 41(5):573–583

    Google Scholar 

  68. Larsson Fredrik, Runesson Kenneth (2011) On two-scale adaptive fe analysis of micro-heterogeneous media with seamless scale-bridging. Comput Methods Appl Mech Eng 200(37–40):2662–2674

    MATH  MathSciNet  Google Scholar 

  69. Larsson Fredrik, Runesson Kenneth (2010) Variationally consistent computational homogenization of transient heat flow. Int J Numer Methos Eng 81(13):1659–1686

    MATH  MathSciNet  Google Scholar 

  70. Lemaitre J, Desmorat R, Sauzay M (2000) Anisotropic damage law of evolution. Eur J Mech A 19(2):187–208

    MATH  Google Scholar 

  71. Lene F, Leguillon D (1982) Homogenized constitutive law for a partially cohesive composite material. Int J Solids Struct 18(5):443–458

    MATH  MathSciNet  Google Scholar 

  72. Lim JH, Sohn D, Lee JH, Im S (2010) Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problems. Comput Struct 88(7–8):413–425

    Google Scholar 

  73. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing Co. Inc., Dordrecht

    Google Scholar 

  74. Lloberas-Valls O, Rixen DJ, Simone A, Sluys LJ (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Methods Eng 89(11):1337–1366

    MATH  MathSciNet  Google Scholar 

  75. Luan BQ, Hyun S, Molinari JF, Bernstein N (2006) Multiscale modeling of two-dimensional contacts. Phys Rev E 74:046710

    Google Scholar 

  76. Markus A (2008) Design patterns and fortran 2003. ACM SIGPLAN Fortran Forum 27:2–15

    Google Scholar 

  77. Massart TJ, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022– 1059

    Google Scholar 

  78. Massart TJ, Peerlings RHJ, Geers MGD (2007) Structural damage analysis of masonry walls using computational homogenization. Int J Damage Mech 16(2):199–226

    Google Scholar 

  79. Matou K, Kulkarni MG, Geubelle PH (2008) Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solids 56(4):1511–1533

    MathSciNet  Google Scholar 

  80. Mei Xu TB (2008) Conservation properties of the bridging domain method for coupled molecular/continuum dynamics. Int J Numer Methods Eng 76:278–294

    MATH  Google Scholar 

  81. Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the extended finite element method (x-fem). Int J Numer Methods Eng 68(9):911–939

    MATH  Google Scholar 

  82. Mesarovic SD, Padbidri J (2005) Minimal kinematic boundary conditions for simulations of disordered microstructures. Philos Mag A 85(1):65–78

    Google Scholar 

  83. Metcalf M, Reid JK, Cohen M (2004) Fortran 95/2003 explained, vol 416. Oxford University Press, NewYork

    MATH  Google Scholar 

  84. Miehe C, Schrder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171(3–4):387–418

    MATH  Google Scholar 

  85. Miller RE, Tadmor EB (2009) A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Modell Simul Mater Sci Eng 17:053001

    Google Scholar 

  86. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):133–150

    Google Scholar 

  87. Monteiro E, Yvonnet J, He QC (2008) Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput Mater Sci 42(4):704–712

    Google Scholar 

  88. Nakamura T, Suresh S (1993) Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metall Mater 41(6):1665–1681

    Google Scholar 

  89. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

  90. Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys JL (2012) Computational homogenization for multiscale crack modeling implementational and computational aspects. Int J Numer Methods Eng 89(2):192–226

    MATH  MathSciNet  Google Scholar 

  91. Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2010) On the existence of representative volumes for softening quasi-brittle materials—a failure zone averaging scheme. Comput Methods Appl Mech Eng 199(45–48):3028–3038

    MATH  Google Scholar 

  92. Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2011) Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks. Comput Methods Appl Mech Eng 200(9):1220–1236

    MATH  Google Scholar 

  93. Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2011) Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J Multiscale Modell 3(4):229–270

    Google Scholar 

  94. Nguyen VP, Stroeven M, Sluys LJ (2012) An enhanced continuous-discontinuous multiscale method for modeling mode-i cohesive failure in random heterogeneous quasi-brittle materials. Eng Fract Mech 79:78–102

    Google Scholar 

  95. Nie JH, Hopkins DA, Chen YT, Hsieh HT (2010) Development of an object-oriented finite element program with adaptive mesh refinement for multi-physics applications. Adv Eng Softw 41(4):569–579

    MATH  Google Scholar 

  96. Norton CD, Decyk VK, Szymanski BK (1997) High performance object-oriented scientific programming in fortran 90. MIT Press, Cambridge

    Google Scholar 

  97. Özdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185–204

    MATH  Google Scholar 

  98. Özdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198(3–4):602–613

    MATH  Google Scholar 

  99. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11):777–783

    MATH  Google Scholar 

  100. Patzák B, Bittnar Z (2001) Design of object oriented finite element code. Adv Eng Softw 32(10):759–767

    MATH  Google Scholar 

  101. Pettermann HE, Suresh S (2000) A comprehensive unit cell model: a study of coupled effects in piezoelectric composites. Int J Solids Struct 37(39):5447–5464

    MATH  Google Scholar 

  102. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    MATH  Google Scholar 

  103. Plimpton S (2001) Atomistic stress simulator (warp)

  104. Press WH (1992) Numerical recipes in fortran: the art of scientific computing, vol 1. Cambridge University Press, New York

    Google Scholar 

  105. Qian D, Wagner GJ, Liu WK (2004) A multiscale projection method for the analysis of carbon nanotubes. Comput Methods Appl Mech Eng 193(17–20):1603–1632

    MATH  Google Scholar 

  106. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343

    MATH  Google Scholar 

  107. Raghavan P, Ghosh S (2005) A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding. Mech Mater 37(9):955–979

    Google Scholar 

  108. Rahman A (1964) Correlations in the motion of atoms in liquid argon. Phys Rev 136(2A):405–411

    Google Scholar 

  109. Robert JS (1983) Comments on virial theorems for bounded systems. Am J Phys 51:940–942

    Google Scholar 

  110. Rouson DWI, Xia J, Xu X (2010) Object construction and destruction design patterns in fortran 2003. Procedia Comput Sci 1(1):1495–1504

    Google Scholar 

  111. Rudd RE, Broughton JQ (2000) Concurrent coupling of length scales in solid state systems. Phys Status Solid B 217(1):251– 291

    Google Scholar 

  112. Schenk O, Gärtner K, Fichtner W, Fichtner A (2001) Pardiso: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Future Gener Comput Syst 18(1):69–78

    MATH  Google Scholar 

  113. Schröder J, Keip M (2010) A framework for the two-scale homogenization of electro-mechanically coupled boundary value problems. Comput Methods Mech 1:311–329

    Google Scholar 

  114. Shao-Qiang TANG, Liu Wing K, Karpov Eduard G, Hou Thomas Y (2007) Bridging atomistic/continuum scales in solids with moving dislocations. Chin Phys Lett 24(1):161

    Google Scholar 

  115. Shenoy VB, Miller R, Tadmor EB, Phillips R, Ortiz M (1998) Quasicontinuum models of interfacial structure and deformation. Phys Rev Lett 80:742–745

    Google Scholar 

  116. Shephard MS, Nuggehally MA, Dale BF, Picu CR, Fish J, Klaas O, Beall MW (2009) Component software for multiscale simulation. In: Fish J (ed) Multiscale methods: bridging the scales in science and engineering. Oxford University Press, New York

    Google Scholar 

  117. Shewchuk J (1996) Triangle: engineering a 2D quality mesh generator and delaunay triangulator. Appl Comput Geom 1148:203–222

    Google Scholar 

  118. Shilkrot LE, Miller RE, Curtin WA (2002) Coupled atomistic and discrete dislocation plasticity. Phys Rev Lett 89:025501

    Google Scholar 

  119. Shilkrot LE, Miller Ronald E, Curtin William A (2004) Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J Mech Phys Solids 52(4):755–787

    MATH  MathSciNet  Google Scholar 

  120. Si H (2007) Tetgen: a quality tetrahedral mesh generator and three-dimensional delaunay triangulator, research group: numerical mathematics and scientific computing, Weierstrass Institute for Applied Analysis and Stochastics. http://wias-berlin.de/software/tetgen/. Accessed 03 Dec 2013

  121. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1): 175–209

    Google Scholar 

  122. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2): 151–184

    Google Scholar 

  123. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181–192

    MATH  Google Scholar 

  124. Souza FV, Allen DH (2010) Multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks. Int J Numer Methods Eng 82(4):464–504

    MATH  MathSciNet  Google Scholar 

  125. Souza FV, Allen DH (2011) Modeling the transition of microcracks into macrocracks in heterogeneous viscoelastic media using a two-way coupled multiscale model. Int J Solids Struct 48 (22–23):3160–3175

    Google Scholar 

  126. Strouboulis T, Copps K, Babuška I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47(8): 1401–1417

    Google Scholar 

  127. Subramaniyan AK, Sun CT (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45 (14–15):4340–4346

    Google Scholar 

  128. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637

    Google Scholar 

  129. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563

    Google Scholar 

  130. Talebi H, Samaniego C, Samaniego E, Rabczuk T (2012) On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods. Int J Numer Methods Eng 89(8):1009–1027

    MATH  MathSciNet  Google Scholar 

  131. Talebi H, Gi Z, Silani M, Samaniego E, Rabczuk T (2012) A simple circular cell method for multilevel finite element analysis, J Appl Math 2012:526846. doi:10.1155/2012/526846

  132. Temizer Ä, Wriggers P (2011) An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures. Comput Methods Appl Mech Eng 200(37–40):2639–2661

    MATH  MathSciNet  Google Scholar 

  133. van der Sluis O, Schreurs PJG, Brekelmans WAM, Meijer HEH (2000) Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mech Mater 32(8):449–462

    Google Scholar 

  134. Verhoosel CV, Remmers JJC, Gutirrez MA, de Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Meth Eng 83(8–9): 1155–1179

    Google Scholar 

  135. Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations. J Comput Phys 190(1):249–274

    MATH  Google Scholar 

  136. Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Google Scholar 

  137. Xiao SP, Belytschko T (2003) Coupling methods for continuum model with molecular model. Int J Multiscale Comput Eng 1:115–126

    Google Scholar 

  138. Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193(17–20):1645–1669

    MATH  MathSciNet  Google Scholar 

  139. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    MATH  Google Scholar 

  140. Yuan Z, Fish J (2008) Toward realization of computational homogenization in practice. Int J Numer Methods Eng 73(3):361–380

    Google Scholar 

  141. Zi G, Rabczuk T, Wall W (2007) Extended meshfree methods without the branch enrichment for the cohesive crack model. Comput Mech 40(2):367–382

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the support of the German Research Foundation (DFG). Also, the authors gratefully acknowledge the help of Dr. Amitava Moitra from Pennsylvania State University for providing the WARP code. Stéphane Bordas and Pierre Kerfriden also thank partial funding for their time provided by the EPSRC under grant EP/G042705/1 Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended finite element method. The European Research Council Starting Independent Research Grant (ERC Stg Grant Agreement No. 279578) entitled “RealTCut – Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Talebi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talebi, H., Silani, M., Bordas, S.P.A. et al. A computational library for multiscale modeling of material failure. Comput Mech 53, 1047–1071 (2014). https://doi.org/10.1007/s00466-013-0948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0948-2

Keywords

Navigation