Skip to main content
Log in

Dielectric and piezoelectric properties of (K0.475Na0.495Li0.03) NbO3-0.003ZrO2/PVDF 0–3 composite reinforced with two types of nano-ZnO particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(K0.475Na0.495Li0.03) NbO3–0.003ZrO2 (KNNL-Z) ceramic was synthesized by the conventional solid-state reaction method. The purchased ZnO nanorods (denoted as ZnO1) and synthesized ZnO nanocakes (denoted as ZnO2) were used in the preparation of two types of composites fabricated by hot-pressing process using KNNL-Z ceramic powder, two kinds of ZnO nanoparticles, and PVDF polymer. The effects of the ZnO nanoparticles on the crystalline structures, morphology, thermal, dielectric, and piezoelectric properties of the composites were studied systemically. The KNNL-Z ceramic possesses a perovskite-type orthorhombic phase and the PVDF polymer mainly possesses α, β, and γ phases. Two kinds of ZnO all possess hexagonal wurtzite structures without any impurity phase. Interestingly, the incorporation of the ZnO nanoparticles has great impact on lattice constants and strain. In addition, the β phase content increases when the ZnO nanoparticles are added. From differential scanning calorimetry (DSC) measurements, it is found that the ZnO nanoparticles can enhance the thermal stability of composites. Moreover, the dielectric and piezoelectric properties are also found to be improved with the increase of ZnO content. Especially when 10 wt% ZnO2 is added, the dielectric constant reaches the value of 469.4 (100 Hz) at room temperature and the piezoelectric coefficient is 55 pC/N. After 30 days of aging test, it is obvious that all the composites present a good stability of piezoelectric property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Murakami, D.W. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z.M. Fan, X.L. Tan, I.M. Reaney, J. Am. Ceram. Soc. 101, 5428–5442 (2018)

    Article  CAS  Google Scholar 

  2. Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song, J.Y. Li, Q. Chen, W.T. Yang, J. Bai, Adv. Mater. 21, 2077–2082 (2009)

    Article  CAS  Google Scholar 

  3. D.Q. Zhang, D.W. Wang, J. Yuan, Q.L. Zhao, Z.Y. Wang, M.S. Cao, Chin. Phys. Lett. 25, 4410–4413 (2008)

    Article  CAS  Google Scholar 

  4. L.Y. Yang, X.Y. Li, E. Allahyarov, P.L. Taylor, Q.M. Zhang, L. Zhu, Polymer 54, 1709–1728 (2013)

    Article  CAS  Google Scholar 

  5. Q.G. Chi, L. Gao, X. Wang, Y. Chen, J.F. Dong, Y. Cui, Q.Q. Lei, AIP Adv. 5, 117103 (2015)

    Article  CAS  Google Scholar 

  6. P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Express Polym. Lett. 4, 632–643 (2010)

    Article  CAS  Google Scholar 

  7. Y. He, J.M. Hong, Adv. Mater. Process. 313, 1818–1821 (2011)

    Google Scholar 

  8. Y.H. Jin, N. Xia, R.A. Gerhardt, Nano Energy 30, 407–416 (2016)

    Article  CAS  Google Scholar 

  9. P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, S. Das, Nano Energy 44, 456–467 (2018)

    Article  CAS  Google Scholar 

  10. L. Weng, P.H. Ju, H.X. Li, L.W. Yan, L.Z. Liu, J. Wuhan Univ. Technol. 32, 958–962 (2017)

    Article  CAS  Google Scholar 

  11. K.Y. Shin, J.S. Lee, J. Jang, Nano Energy 22, 95–104 (2016)

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y. Wang, Y. Deng, M. Li, J.B. Bai, ACS Appl. Mater. Interfaces 4, 65–68 (2012)

    Article  CAS  Google Scholar 

  13. W. Wu, X.Y. Huang, S.T. Li, P.K. Jiang, T. Toshikatsu, J. Phys. Chem. C 116, 24887–24895 (2012)

    Article  CAS  Google Scholar 

  14. K. Yu, S. Hu, W.D. Yu, J.Q. Tan, J. Electron. Mater. 48, 2329–2337 (2019)

    Article  CAS  Google Scholar 

  15. A.K. Zak, W.C. Gan, W.A. Majid, M. Darroudi, T.S. Velayutham, Ceram. Int. 37(5), 1653–1660 (2011)

    Article  CAS  Google Scholar 

  16. K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, Y.J. Niu, J. Appl. Phys. 113, 034105 (2013)

    Article  CAS  Google Scholar 

  17. T. Lusiola, A. Hussain, M.H. Kim, T. Graule, F. Clemens, Actuators 4, 99–113 (2015)

    Article  Google Scholar 

  18. Y. Huan, X.H. Wang, T. Wei, P.Y. Zhao, J. Xie, Z.F. Ye, L.T. Li, J. Eur. Ceram. Soc. 37, 2057–2065 (2017)

    Article  CAS  Google Scholar 

  19. K. Kumari, A. Prasad, K. Prasad, J. Mater. Sci. Technol. 27, 213–217 (2011)

    Article  CAS  Google Scholar 

  20. Y.C. Lee, T.K. Lee, J.H. Jan, J. Eur. Ceram. Soc. 31, 3145–3152 (2011)

    Article  CAS  Google Scholar 

  21. H. Parangusan, D. Ponnamma, M.A. AlMaadeed, RSC Adv. 7, 50156–50165 (2017)

    Article  CAS  Google Scholar 

  22. Y. Zhang, C.H. Liu, J.B. Liu, J. Xiong, J.Y. Liu, K. Zhang, Y.D. Liu, M.Z. Peng, A.F. Yu, A.H. Zhang, Y. Zhang, Z.W. Wang, J.Y. Zhai, Z.L. Wang, ACS Appl. Mater. Interfaces 8, 1381–1387 (2016)

    Article  CAS  Google Scholar 

  23. K. Yu, S. Hu, W.D. Yu, J.Q. Tan, J. Electron. Mater. 48, 5919–5932 (2019)

    Article  CAS  Google Scholar 

  24. V.V. Atuchin, C.C. Ziling, D.P. Shipilova, N.F. Beizel, Ferroelectrics 100, 261–269 (1989)

    Article  CAS  Google Scholar 

  25. A. Watcharapasorn, S. Jiansirisomboon, Ceram. Int. 34, 769–772 (2008)

    Article  CAS  Google Scholar 

  26. C.J. Dias, D.K. DasGupta, IEEE Trans. Dielect. Electr. Insul. 3, 706–734 (1996)

    Article  CAS  Google Scholar 

  27. I.Y. Abdullah, M. Yahaya, M.H.H. Jumali, H.M. Shanshool, Opt. Quant. Electron. 48, 149 (2016)

    Article  CAS  Google Scholar 

  28. T. Greeshma, R. Balaji, S. Jayakumar, Ferroelectrics Lett. 40, 41–55 (2013)

    Article  CAS  Google Scholar 

  29. L. Yu, P. Cebe, Polymer 50, 2133–2141 (2009)

    Article  CAS  Google Scholar 

  30. S.K. Ghosh, M.M. Alam, D. Mandal, RSC Adv. 4, 41886–41894 (2014)

    Article  CAS  Google Scholar 

  31. A.C. Lopes, S.A. Carabineiro, M.F. Pereira, G. Botelho, S. Lanceros-Mendez, ChemPhysChem 14, 1926–1933 (2013)

    Article  CAS  Google Scholar 

  32. P. Martins, C. Caparros, R. Goncalves, P.M. Martins, M. Benelmekki, G. Botelho, S. Lanceros-Mendez, J. Phys. Chem. C 116, 15790–15794 (2012)

    Article  CAS  Google Scholar 

  33. V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, B.G. Bazarov, J.G. Bazarova, J. Phys. Chem. C 118, 15404–15411 (2014)

    Article  CAS  Google Scholar 

  34. K.A. Kokh, V.V. Atuchin, T.A. Gavrilova, N.V. Kuratieva, N.V. Pervukhina, N.V. Surovtsev, Solid State Commun. 177, 16–19 (2014)

    Article  CAS  Google Scholar 

  35. J.B. Zhong, J.Z. Li, Z.H. Xiao, W. Hu, X.B. Zhou, X.W. Zheng, Mater. Lett. 91, 301–303 (2013)

    Article  CAS  Google Scholar 

  36. H.M. Moghaddam, H. Malkeshi, J. Mater. Sci. 27, 8807–8815 (2016)

    Google Scholar 

  37. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78, 99–104 (2003)

    Article  Google Scholar 

  38. J. Li, C.M. Zhao, K. Xia, X. Liu, D. Li, J. Han, Appl. Surf. Sci. 463, 626–634 (2019)

    Article  CAS  Google Scholar 

  39. A.P. Indolia, M.S. Gaur, J. Therm. Anal. Calorim. 113, 821–830 (2013)

    Article  CAS  Google Scholar 

  40. A. Batool, F. Kanwal, M. Imran, T. Jamil, S.A. Siddiqi, Synth. Met. 161, 2753–2758 (2012)

    Article  CAS  Google Scholar 

  41. L.J. Fang, W. Wu, X.Y. Huang, J.L. He, P.K. Jiang, Compos. Sci. Technol. 107, 67–74 (2015)

    Article  CAS  Google Scholar 

  42. W. Gao, B. Zhou, Y.H. Liu, X.Y. Ma, Y. Liu, Z.C. Wang, Y.C. Zhu, Polym. Int. 62, 432–438 (2013)

    Article  CAS  Google Scholar 

  43. A. Lonjon, L. Laffont, P. Demont, E. Dantras, C. Lacabanne, J. Phys. D 43, 345401 (2010)

    Article  CAS  Google Scholar 

  44. A.S. Bhatt, D.K. Bhat, M.S. Santosh, J. Appl. Polym. Sci. 119, 968–972 (2011)

    Article  CAS  Google Scholar 

  45. Z.M. He, J. Ma, R.F. Zhang, T. Li, J. Eur. Ceram. Soc. 23, 1943–1947 (2003)

    Article  CAS  Google Scholar 

  46. E. Atamanik, V. Thangadurai, J. Phys. Chem. C 113, 4648–4653 (2009)

    Article  CAS  Google Scholar 

  47. A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C.S. Reddy, K.N. Rao, M. Prasad, World J. Condens. Matter Phys. 2, 257–266 (2012)

    Article  CAS  Google Scholar 

  48. Y. Chen, S.X. Xie, H.M. Wang, Q. Chen, Q.Y. Wang, J.G. Zhu, Z.W. Guan, J. Alloy. Compd. 696, 746–753 (2017)

    Article  CAS  Google Scholar 

  49. Y. Zhou, J.C. Zhang, L. Li, Y.L. Su, J.R. Cheng, S.X. Cao, J. Alloy. Compd. 484, 535–539 (2009)

    Article  CAS  Google Scholar 

  50. K.T. Selvi, K. Alamelumangai, M. Priya, M. Rathnakumari, P.S. Kumar, S. Sagadevan, J. Mater. Sci. 27, 6457–6463 (2016)

    Google Scholar 

  51. W.Y. Zhou, Z.J. Wang, L.N. Dong, X.Z. Sui, Q.G. Chen, Compos. Part A 79, 183–191 (2015)

    Article  CAS  Google Scholar 

  52. J.H. Choi, J.S. Seo, S.N. Cha, H.J. Kim, S.M. Kim, Y.J. Park, S.W. Kim, J.B. Yoo, J.M. Kim, Jpn. J. Appl. Phys. 50, 1 (2011)

    Google Scholar 

  53. O.J. Cheong, J.S. Lee, J.H. Kim, J. Jang, Small 12, 2567–2574 (2016)

    Article  CAS  Google Scholar 

  54. S.T. Wang, J. Sun, L. Tong, Y.M. Guo, H. Wang, C.C. Wang, Mater. Lett. 211, 114–117 (2018)

    Article  CAS  Google Scholar 

  55. I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab, N.A. Hakeem, Phys. B 405, 94–98 (2010)

    Article  CAS  Google Scholar 

  56. S. Adireddy, V.S. Puli, T.J. Lou, R. Elupula, S.C. Sklare, B.C. Riggs, D.B. Chrisey, J. Sol-Gel Sci. Technol. 73, 641–646 (2015)

    Article  CAS  Google Scholar 

  57. S.H. Liu, J.W. Zhai, RSC Adv. 4, 40973–40979 (2014)

    Article  CAS  Google Scholar 

  58. Z. Wang, T. Wang, C. Wang, Y.J. Xiao, P.P. Jing, Y.F. Cui, Y.P. Pu, ACS Appl. Mater. Interfaces 9, 29130–29139 (2017)

    Article  CAS  Google Scholar 

  59. B.C. Luo, X.H. Wang, Y.P. Wang, L.T. Li, J. Mater. Chem. A 2, 510–519 (2014)

    Article  CAS  Google Scholar 

  60. J.G.L. Peng, J.T. Zeng, L.Y. Zheng, G.R. Li, N. Yaacoub, M. Tabellout, A. Gibaud, A. Kassiba, J. Alloy. Compd. 796, 221–228 (2019)

    Article  CAS  Google Scholar 

  61. Q.Q. Zhang, F. Gao, G.X. Hu, C.C. Zhang, M. Wang, M.J. Qin, L. Wang, Compos. Sci. Technol. 118, 94–100 (2015)

    Article  CAS  Google Scholar 

  62. K. Yu, S. Hu, W.D. Yu, J.Q. Tan, Opt. Quant. Electron. 51, 336 (2019)

    Article  CAS  Google Scholar 

  63. S. Paria, S.K. Karan, R. Bera, A.K. Das, A. Maitra, B.B. Khatua, Ind. Eng. Chem. Res. 55, 10671–10680 (2016)

    Article  CAS  Google Scholar 

  64. C.L. Hsu, I.L. Su, T.J. Hsueh, RSC Adv. 5, 34019–34026 (2015)

    Article  CAS  Google Scholar 

  65. X.L. Yu, Y.D. Hou, M.P. Zheng, J. Yan, W.X. Jia, M.K. Zhu, J. Am. Ceram. Soc. 102, 275–284 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Development Fund of China University of Geosciences (Grant No. 110-KH14J130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Hu, S., Tan, J. et al. Dielectric and piezoelectric properties of (K0.475Na0.495Li0.03) NbO3-0.003ZrO2/PVDF 0–3 composite reinforced with two types of nano-ZnO particles. J Mater Sci: Mater Electron 31, 1367–1381 (2020). https://doi.org/10.1007/s10854-019-02650-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02650-w

Navigation