Skip to main content
Log in

Structural, spectroscopic and dielectric properties of Ca-doped BaTiO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ca-doped barium titanate BaTiO3 nanopowders were synthesized by the sol–gel process using barium acetate [Ba(CH3COO)2], calcium acetate [Ca(CH3COO)2] and titanium butoxide [Ti(OC4H9)4] as precursors. This method was adopted because it allows obtaining powders of high purity, chemical homogeneity and fine particle size, and crystallization is possible at very low temperatures (800 °C) compared to that used by the conventional solid-state reaction method. In this study, the characterization of nanopowders and ceramics using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), dielectric measurements, FTIR and Raman spectroscopy is carried out. The results revealed that the calcium ion incorporation had significant effect on structural and dielectric properties of barium titanate BaTiO3 (BT). XRD patterns suggested that nanopowders calcined at the temperature of 800 °C during 2 h could be crystallized into perovskite structure, with an average crystallite size in the range of 19.89–25.04 nm. Furthermore, it was observed that the Ca concentration variation affected the emission process with little displacement in the peak position. These results proved the optical band gap reduction by the presence of inter-band electron levels. Finally, the dielectric properties of the prepared samples were measured, revealing that the dielectric permittivity decreased with frequency increase, and the grain size and Curie temperature of the Ba1−xCaxTiO3 (BCT) ceramics sintered at 1200 °C were greatly affected by Ca substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.Y. Tian, Y. Wang, J. Miao, H.L.W. Chan, C.L. Choy, J. Alloys Compd. 431, 197–202 (2007)

    Google Scholar 

  2. F. Boujelben, F. Bahri, C. Bouday, A. Maalej, H. Khemakhem, A. Simon, M. Maglione, J. Alloys Compd. 481, 559–562 (2009)

    Google Scholar 

  3. Q. Xu, X.F. Zhang, Y.H. Huang, W. Chen, H.X. Liu, M. Chen, B.H. Kim, J. Alloys Compd. 488, 448–453 (2009)

    Google Scholar 

  4. J.Y. Chen, Y.W. Tseng, C.L. Huang, J. Alloys Compd. 494, 205–209 (2010)

    Google Scholar 

  5. X. Cheng, M. Shen, Solid State Commun. 141, 587–590 (2007)

    ADS  Google Scholar 

  6. D. Fu, M. Itoh, S. Koshihara, Appl. Phys. Lett. 93, 012904 (2008)

    ADS  Google Scholar 

  7. X. Cheng, M. Shen, Mater. Res. Bull. 42, 1662–1668 (2007)

    Google Scholar 

  8. F.V. Motta, A.P.A. Marques, J.W.M. Espinosa, P.S. Pizani, E. Longo, J.A. Varela, Curr. Appl. Phys. 10, 16–20 (2010)

    ADS  Google Scholar 

  9. S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Phys. Solid State 50, 886–893 (2008)

    ADS  Google Scholar 

  10. V.D. Araujo, F.V. Motta, A.P.A. Marques, C.A. Paskocimas, M.R.D. Bomio, E. Longo, J.A. Varela, J. Mater. Sci. 49, 2875–2878 (2014)

    ADS  Google Scholar 

  11. S.V. Trukhanov, V.V. Fedotova, A.V. Trukhanov, S.G. Stepin, H. Szymczak, Crys. Rep. 53, 1177–1180 (2008)

    Google Scholar 

  12. V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, Surf. Sci. 602, 3095–3099 (2008)

    ADS  Google Scholar 

  13. V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, I.B. Troitskaia, J. Solid State Chem. 195, 125–131 (2012)

    ADS  Google Scholar 

  14. H.P. Ji, L. Wang, M.S. Molokeev, N. Hirosaki, R.J. Xie, Z.H. Huang, Z.G. Xia, O.M.T. Kate, L.H. Liu, V.V. Atuchin, J. Mater. Chem. C 4, 6855–6863 (2016)

    Google Scholar 

  15. B. Cui, P. Yu, X. Wang, J. Alloys Compd. 459, 589–593 (2008)

    Google Scholar 

  16. F.V. Motta, A.P.A. Marques, C.A. Paskocimas, M.R.D. Bomio, A.S.F. Santos, E.R. Leite, J.A. Varela, E. Longo, in Polymerization, 3nd edn. (INTECH, Rijeka, 2012), pp. 261–278

  17. Y.Y. Yao, J.N. Cheng, P. Zhao, J. Chin. Ceram. Soc. 32, 751–754 (2004)

    Google Scholar 

  18. A.E. Souza, S.R. Teixeira, C.M. -Santos, W.H. Schreiner, P.N.L. Filho, E. Longo, J. Mater. Chem. C 2, 7056 (2014)

    Google Scholar 

  19. R.S. Silva, M.I.B. Bernardi, A.C. Hernandes, J. Sol–Gel Sci. Technol. 42, 173–179 (2007)

    Google Scholar 

  20. R.S. Silva, A.C. Hernandes, J.-C. M’Peko, Mater. Res. 15, 522–529 (2012)

    Google Scholar 

  21. C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, V.V. Atuchin, J. Solid State Chem. 228, 160–166 (2015)

    ADS  Google Scholar 

  22. C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, D.A. Ikonnikov, V.V. Atuchin, Dalton Trans. 45, 15541–15551 (2016)

    Google Scholar 

  23. C.S. Lim, V.V. Atuchin, A.S. Aleksandrovsky, M.S. Molokeev, Mater. Lett. 181, 38–41 (2016)

    Google Scholar 

  24. R.S. Silvaa, L.M. Jesus, T.C. Oliveira, D.V. Sampaio, J.C.A. Santos, A.C. Hernandes, J. Eur. Ceram. Soc. 36, 4023–4030 (2016)

    Google Scholar 

  25. M.R. Panigrahi, S. Panigrahi, Phys. B 405, 1787–1791 (2010)

    ADS  Google Scholar 

  26. S.H. Jabarov, A.I. Mammadov, A.V. Trukhanov, J. Surf. Invest. 11, 223–225 (2017)

    Google Scholar 

  27. X. Jin, D. Sun, Y. Zhang, J. Qian, J. Electrocer. 22, 285–290 (2009)

    Google Scholar 

  28. J.A. Dawson, X. Li, C.L. Freeman, J.H. Harding, D.C. Sinclair, J. Mater. Chem. C 1, 1574–1582 (2013)

    Google Scholar 

  29. X.Y. Wang, B. Lee, M. Hu, E.A. Payzant, D.A. Blom, J. Eur. Ceram. Soc. 26, 2319–2326 (2006)

    Google Scholar 

  30. A. Pinczuk, W. Tayler, E. Burstein, Solid state Commun. 5, 429 (1967)

    ADS  Google Scholar 

  31. M. Didomenico, S.H. Wemple, S.P.S. Porto, Phys. Rev. 174, 522–530 (1968)

    ADS  Google Scholar 

  32. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, J. Raman Spectrosc. 38, 1288–1299 (2007)

    ADS  Google Scholar 

  33. G. Busca, V. Buscaglia, M. Leoni, P. Nanni, Chem. Mater. 6, 955–961 (1994)

    Google Scholar 

  34. Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu, J. Wang, J. Qiu, Sci. Rep. 7, 42274 (2017)

    ADS  Google Scholar 

  35. M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)

    Google Scholar 

  36. F.A. Rabuffetti, R.L. Brutchey, J. Am. Chem. Soc. 134, 9475–9487 (2012)

    Google Scholar 

  37. L. Wang, H. Kang, D. Xue, C. Liu, J. Crys. Growth 311, 605–607 (2009)

    ADS  Google Scholar 

  38. Y.D. Hou, L. Hou, J.F. Yang, M.K. Zhu, H. Wang, H. Yan, Acta Chim. Sinica 10, 950–954 (2007)

    Google Scholar 

  39. Y.V. Kolen’ko, K.A. Kovnir, I.S. Neira, T. Taniguchi, T. Ishigaki, T. Watanabe, N. Sakamoto, M. Yoshimura, J. Phys. Chem. C 111, 7306–7318 (2007)

    Google Scholar 

  40. X.S. Wang, L.L. Zhang, H. Liu, J.W. Zhai, X. Yao, Mater. Chem. Phys. 112, 675–678 (2008)

    Google Scholar 

  41. W.F. Zhang, Z. Yin, M.S. Zhang, Z.L. Du, W.C. Chen, J. Phys. Cond. Mater. 11, 5655–5660 (1999)

    ADS  Google Scholar 

  42. K. Asokan, J.C. Jan, J.W. Chiou, W.F. Pong, P.K. Tseng, I.N. Lin, J. Synchrot. Radiat. 8, 839–841 (2001)

    Google Scholar 

  43. F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307–435 (1956)

    Google Scholar 

  44. R.M. Mahani, I.K. Battisha, M. Aly, A.B. Abou-Hamad, J. Alloys Compd. 508, 354–358 (2010)

    Google Scholar 

  45. M. Nayak, T.Y. Tseng, J. Thin Solid Films 408, 194–199 (2002)

    ADS  Google Scholar 

  46. X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, Mater. Lett. 62, 3666–3669 (2008)

    Google Scholar 

  47. I.K. Battisha, A.B. Abou Hamad, R.M. Mahani, Phys. B 404, 2274–2279 (2009)

    ADS  Google Scholar 

  48. I.E. Dubois, S. Holgersson, S. Allard, M.E. Malmstrom, W.-R. Interaction, B. Torres-Alvarado (eds.), Taylor & Francis Group, London, 717–720 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hassen Khedhri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedhri, M.H., Abdelmoula, N., Khemakhem, H. et al. Structural, spectroscopic and dielectric properties of Ca-doped BaTiO3. Appl. Phys. A 125, 193 (2019). https://doi.org/10.1007/s00339-019-2487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2487-y

Navigation