Skip to main content
Log in

FTIR, DC, and AC electrical measurements of Mg Zn Nano-ferrites and their composites with Polybenzoxazine

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mg Zn nano-ferrites, benzoxazine monomer, polybenzoxazine polymer (PBZ), and PBZ/ferrite composites with different weight ratios have been prepared by citrate–nitrate auto combustion and co-precipitation methods. Fourier transform infrared (FTIR) analysis for those samples has been investigated. The DC conductivity (σDC), the AC conductivity (σ'AC), and dielectric properties such as the dielectric constant (ε') and dielectric loss tangent (tan δ) of the samples have been investigated too as functions of temperature and/or frequency. The FTIR spectra show the presence of the two characteristic absorption bands of ferrites, one in the range (540–570) cm−1 and the other in the range (339–435) cm−1. The existence of PBZ in the composites has been confirmed by the FTIR spectroscopy study. The conductivity of both ferrites and composites exhibits a well-expected semiconducting behaviour in agreement with the literature. Also, the σDC has decreased with the increase in Zn content in the ferrite samples. Moreover, the frequency dependence of σ'AC, έ, and tan δ is in agreement with the literature and with the theories interpreting the conductivity and the dielectric constant of heterogeneous materials composed of grains and grain boundaries. The maximum peak of the tan δ is not observed in the present samples as the range of frequencies may be larger than the frequency of the expected peak. The conductivity results and the dielectric constant results of the samples and their interpretations are consistent and reinforce each other. According to the literature, such composites may be used as a semiconductor element mounting board. Another probable application is in the manufacture of some electrochemical cell components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T.Ş Kuru, Appl. Phys. A Mater. Sci. Process. 126, 419 (2020). https://doi.org/10.1007/s00339-020-03575-6

    Article  ADS  Google Scholar 

  2. M. Mubasher, M. Mumtaz, L. Hassan, Z. Ali, M.A. Ahmad, M.F. Imtiaz, A. Aamir, K. Rehman, Nadeem. Appl. Phys. A Mater. Sci. Process. 126, 334 (2020). https://doi.org/10.1007/s00339-020-03529-y

    Article  ADS  Google Scholar 

  3. S. Singh, S.C. Katyal, N. Goswami, Appl. Phys. A Mater. Sci. Process. 125, 638 (2019). https://doi.org/10.1007/s00339-019-2936-7

    Article  ADS  Google Scholar 

  4. M.M. Hussein, S.A. Saafan, N.A. Salahuddin, M.K. Omar, Appl. Phys. A 127, 448 (2021). https://doi.org/10.1007/s00339-021-04620-8

    Article  ADS  Google Scholar 

  5. M.A. Almessiere, Y. Slimani, A. Baykal, J. Alloys Compd. 767, 966 (2018). https://doi.org/10.1016/j.jallcom.2018.07.212

    Article  Google Scholar 

  6. Y. Slimani, E. Hannachi, M. K. Ben Salem, A. Hamrita, M. Ben Salem, F. Ben Azzouz, J. Supercond. Nov. Magn. 28, 3001 (2015). https://doi.org/10.1007/s10948-015-3144-0.

  7. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, J. Mater. Sci. Mater. Electron. 31, 7786 (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  Google Scholar 

  8. D.R. Kumar, C.A. Lincoln, D. Ravinder, S.I. Ahmad, Appl. Phys. A Mater. Sci. Process. 126, 705 (2020). https://doi.org/10.1007/s00339-020-03894-8

    Article  Google Scholar 

  9. T. Ajeesha, A. A, M. George, A. Manikandan, J. A. Mary, Y. Slimani, M. A. Almessiere, A. Baykal, Phys. B Condens. Matter 606, 412660 (2021). https://doi.org/10.1016/j.physb.2020.412660.

  10. A.K. Pradhan, S. Saha, T.K. Nath, Appl. Phys. A Mater. Sci. Process. 123, 715 (2017). https://doi.org/10.1007/s00339-017-1329-z

    Article  ADS  Google Scholar 

  11. Y. Slimani, M.A. Almessiere, A.D. Korkmaz, S. Guner, H. Güngüneş, M. Sertkol, A. Manikandan, A. Yildiz, S. Akhtar, S.E. Shirsath, A. Baykal, Ultrason. Sonochem. 59, 104757 (2019). https://doi.org/10.1016/j.ultsonch.2019.104757

    Article  Google Scholar 

  12. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, J. Mater. Sci. Mater. Electron. 30, 9520 (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  Google Scholar 

  13. Z. Zhang, Mater. Today Commun. 26, 101734 (2021). https://doi.org/10.1016/j.mtcomm.2020.101734

    Article  Google Scholar 

  14. M.A. Almessiere, S. Dabagh, Y. Slimani, K. Chaudhary, J. Ali, A. Baykal, J. Inorg. Organomet. Polym. Mater. 28, 942 (2018). https://doi.org/10.1007/s10904-017-0764-9

    Article  Google Scholar 

  15. T. Dippong, E.A. Levei, I.G. Deac, E. Neag, O. Cadar, Nanomaterials 10, 580 (2020). https://doi.org/10.3390/nano10030580

    Article  Google Scholar 

  16. T. Dippong, E.A. Levei, F. Goga, I. Petean, A. Avram, O. Cadar, J. Sol-Gel Sci. Technol. 92, 736 (2019). https://doi.org/10.1007/s10971-019-05140-x

    Article  Google Scholar 

  17. N.S. Al-Bassami, S.F. Mansour, Appl. Phys. A Mater. Sci. Process. 127, 38 (2021). https://doi.org/10.1007/s00339-020-04022-2

    Article  ADS  Google Scholar 

  18. R. Sagayaraj, S. Aravazhi, G. Chandrasekaran, Appl. Phys. A 127, 502 (2021). https://doi.org/10.1007/s00339-021-04653-z

    Article  ADS  Google Scholar 

  19. R. Megha, Y. T. Ravikiran, S. C. Vijaya Kumari, S. Thomas, Appl. Phys. A Mater. Sci. Process. 123, 245 (2017). https://doi.org/10.1007/s00339-017-0866-9.

  20. D.R. Kumar, S.I. Ahmad, C.A. Lincoln, D. Ravinder, J. Asian Ceram. Soc. 7, 53 (2019). https://doi.org/10.1080/21870764.2018.1563036

    Article  Google Scholar 

  21. P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell, G.F. Hurtado-López, J. Magn. Magn. Mater. 427, 268 (2017). https://doi.org/10.1016/j.jmmm.2016.10.078

    Article  ADS  Google Scholar 

  22. T. Dippong, E.A. Levei, C.L. Lengauer, A. Daniel, D. Toloman, O. Cadar, Mater. Charact. 163, 110268 (2020). https://doi.org/10.1016/j.matchar.2020.110268

    Article  Google Scholar 

  23. M.P. Aakash, S. Ghosh, Mukherjee. Appl. Phys. A Mater. Sci. Process. 125, 853 (2019). https://doi.org/10.1007/s00339-019-3155-y

    Article  ADS  Google Scholar 

  24. M.A. Gabal, A.A. Al-Juaid, J. Mater. Sci. Mater. Electron. 31, 10055 (2020). https://doi.org/10.1007/s10854-020-03551-z

    Article  Google Scholar 

  25. M. A. Darwish, S. A. Saafan, D. El- Kony, and N. A. Salahuddin, J. Magn. Magn. Mater. 385, 99 (2015). https://doi.org/10.1016/j.jmmm.2015.02.068.

  26. E. Melagiriyappa, H.S. Jayanna, B.K. Chougule, Mater. Chem. Phys. 112, 68 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.014

    Article  Google Scholar 

  27. W. Rungswang, S. Chirachanchai, in Advanced and Emerging Polybenzoxazine Science and Technology, ed. By H. Ishida, P. Froimowicz (Elsevier, Massachusetts, 2017), p. 601. https://doi.org/10.1016/B978-0-12-804170-3.00030-5.

  28. S.J. Stewart, M.J. Tueros, G. Cernicchiaro, R.B. Scorzelli, Solid State Commun. 129, 347 (2004). https://doi.org/10.1016/j.ssc.2003.11.010

    Article  ADS  Google Scholar 

  29. M.R. Barati, J. Sol-Gel Sci. Technol. 52, 171 (2009). https://doi.org/10.1007/s10971-009-2023-1

    Article  Google Scholar 

  30. B. Thangjam, I. Soibam, J. Nanomater. 2017, 5756197 (2017). https://doi.org/10.1155/2017/5756197

    Article  Google Scholar 

  31. M.A. Darwish, A.V. Trukhanov, O.S. Senatov, A.T. Morchenko, S.A. Saafan, K.A. Astapovich, S.V. Trukhanov, E.L. Trukhanova, A.A. Pilyushkin, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, Nanomaterials 10, 492 (2020). https://doi.org/10.3390/nano10030492

    Article  Google Scholar 

  32. R. Samad, M. ud D. Rather, K. Asokan, B. Want, Appl. Phys. A Mater. Sci. Process. 125, 503 (2019). https://doi.org/10.1007/s00339-019-2804-5.

  33. D. Ravinder, K.V. Kumar, Bull. Mater. Sci. 24, 505 (2001)

    Article  Google Scholar 

  34. M. Hashim, Alimuddin, S. Kumar, B. H. Koo, S. E. Shirsath, E. M. Mohammed, J. Shah, R. K. Kotnala, H. K. Choi, H. Chung, R. Kumar, J. Alloys Compd. 518, 11 (2012). https://doi.org/10.1016/j.jallcom.2011.12.017.

  35. S.A. Saafan, A.S. Seoud, R.E. El Shater, Phys. B Condens. Matter 365, 27 (2005). https://doi.org/10.1016/j.physb.2005.04.034

    Article  ADS  Google Scholar 

  36. J.C. Dyre, Phys. Rev. B 48, 12511 (1993). https://doi.org/10.1103/PhysRevB.48.12511

    Article  ADS  Google Scholar 

  37. S. Munir, I. Ahmad, A. Laref, H.M.T. Farid, Appl. Phys. A Mater. Sci. Process. 126, 772 (2020). https://doi.org/10.1007/s00339-020-03809-7

    Article  Google Scholar 

  38. S. Rimdusit, C. Jubsilp, S. Tiptipakorn, Alloys and Composites of Polybenzoxazines:Properties and Applications, 1st edn. (Springer, Heidelberg, 2017), p. 139.

  39. M. Ajmal, M.U. Islam, A. Ali, J. Supercond. Nov. Magn. 31, 1375 (2018). https://doi.org/10.1007/s10948-017-4332-x

    Article  Google Scholar 

  40. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Appl. Phys. A Mater. Sci. Process. 126, 362 (2020). https://doi.org/10.1007/s00339-020-03544-z

    Article  ADS  Google Scholar 

  41. S.T. Assar, H.F. Abosheiasha, E.H. El-Ghazzawy, J. Alloys Compd. 802, 553 (2019). https://doi.org/10.1016/j.jallcom.2019.06.149

    Article  Google Scholar 

  42. M.A. Almessiere, Y. Slimani, H. Güngüneş, A. Baykal, S.V. Trukhanov, A.V. Trukhanov, Nanomaterials 9, 24 (2019). https://doi.org/10.3390/nano9010024

    Article  Google Scholar 

  43. K. Latha, D. Ravinder, Mater. Lett. 41, 247 (1999). https://doi.org/10.1016/S0167-577X(99)00138-X

    Article  Google Scholar 

  44. M.M. Salem, A.T. Morchenko, L.V. Panina, V.G. Kostishyn, V.G. Andreev, S.B. Bibikov, A.N. Nikolaev, Phys. Procedia 75, 1360 (2015). https://doi.org/10.1016/j.phpro.2015.12.152

    Article  ADS  Google Scholar 

  45. K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin. Curr. Appl. Phys. 9, 1072 (2009). https://doi.org/10.1016/j.cap.2008.12.002

    Article  ADS  Google Scholar 

  46. S. Anjum, M. Nisa, A. Sabah, M.S. Rafique, R. Zia, Appl. Phys. A Mater. Sci. Process. 123, 554 (2017). https://doi.org/10.1007/s00339-017-1169-x

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa M. Hussein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saafan, S.A., El-Nimr, M.K., Hussein, M.M. et al. FTIR, DC, and AC electrical measurements of Mg Zn Nano-ferrites and their composites with Polybenzoxazine. Appl. Phys. A 127, 800 (2021). https://doi.org/10.1007/s00339-021-04947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04947-2

Keywords

Navigation