Skip to main content
Log in

Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper describes the room temperature dielectric and electrical response of several transition metal ions (Cr3+, Mn2+, Zn2+ and Cd2+)-doped nickel ferrite nanoparticles. The formation of pure cubic spinel phase, microstructural and magnetic properties of these three series of nanocrystalline-doped nickel ferrite samples was reported in previous papers. It is observed that hopping of electrons is the possible charge conduction mechanism for all doped nickel ferrite samples at room temperature. All the doped ferrite samples exhibited increment in ac conductivity with increasing ac field frequency. The hopping length is found to decrease with increasing dopant concentration in Zn–Cd–Ni ferrite and Cr–Ni ferrite. For Mn-doped nickel ferrite, a slight increase in hopping length is observed. All the doped nanoferrites showed good dielectric behavior below 100 Hz along with a rapid decline above 100 Hz and finally attained negligible value. The existence of two semicircles in Nyquist plots indicates that grains and grains boundaries contribute more in dielectric responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.B. Darling, S.D. Bader, J. Mater. Chem. 15, 4189–4195 (2005)

    Article  Google Scholar 

  2. C. Caizer, Mat. Sci. Eng. B. 100, 63–68 (2003)

    Article  Google Scholar 

  3. D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606–8615 (2009)

    Article  Google Scholar 

  4. R. Mohan R, M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 458, 193–199 (2018).

  5. R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express 5, 035029 (2018)

    Article  ADS  Google Scholar 

  6. S. Singhal, J. Sigh, S.K. Barthwal, K.J. Chandra, Solid State Chem. 178, 3183 (2005)

    Article  ADS  Google Scholar 

  7. R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express 6, 056105 (2019)

    Article  ADS  Google Scholar 

  8. S. Kumar, V. Singh, S. Aggarwal, U.K. Mandal, R.K. Kotnala, Mater. Sci. Eng. B. 166, 76–82 (2010)

    Article  Google Scholar 

  9. M. Zhang, Z. Zi, Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, J. Dai, Adv. Mater. Sci. Eng. 2013, 1–10 (2013)

    Google Scholar 

  10. R. Aakash, R. Choubey, D. Das, D. Mukherjee, Ceram. Int. 42, 7742–7747 (2016)

    Article  Google Scholar 

  11. R. Aakash, D. Choubey, S.M. Das, J. Alloy. Compd. 668, 33–39 (2016)

    Article  Google Scholar 

  12. P. Aakash, R. Nordbald, S.M. Mohan, J. Magn. Magn. Mater. 441, 710–717 (2017)

    Article  ADS  Google Scholar 

  13. Z.Z. Lazarevic, C. Jovalekic, D.L. Sekulic, A. Milutinovic, S. Balos, M. Slankamenac, N.Z. Romcevic, Mater. Res. Bull. 48, 4368–4378 (2013)

    Article  Google Scholar 

  14. D. Varshney, K. Verma, Mater. Chem. Phys. 140, 412–418 (2013)

    Article  Google Scholar 

  15. R. Sharma, P. Thakur, M. Kumar, P. Sharma, V. Sharma, Ceram. Int. 43, 13661–13669 (2017)

    Article  Google Scholar 

  16. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Solid State Sci. 13, 539–547 (2011)

    Article  ADS  Google Scholar 

  17. G. Kumar, J. Shah, R.K. Kotnala, V.P. Singh, Sarveena, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Mater. Res. Bull.63, 216–225 (2015)

  18. A. Kumar, P. Sharma, D. Varshney, Ceram. Int. 40, 12855–12860 (2014)

    Article  Google Scholar 

  19. R.K. Panda, R. Muduli, D. Behera, J. Alloy. Compd. 634, 239–245 (2015)

    Article  Google Scholar 

  20. R.K. Panda, R. Muduli, S.K. Kar, D. Behera, J. Alloy. Compd. 615, 899–905 (2015)

    Article  Google Scholar 

  21. R.K. Panda, D. Behera, J. Alloy. Compd. 587, 481–486 (2014)

    Article  Google Scholar 

  22. N.H. Vasoya, V.K. Lakhani, P.U. Sharma, K.B. Modi, R. Kumar, H.H. Joshi, J. Phys, Cond. Matter. 18, 8063–8092 (2016)

    Article  ADS  Google Scholar 

  23. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D Appl. Phys. 411, 85005 (2008)

    Google Scholar 

  24. E.V. Maxwell, Comp. Phys. Commun. 9, 117–128 (1975)

    Article  Google Scholar 

  25. D.S. Nikam, S.V. Jadav, V.M. Khot, R.A. Bohara, C.K. Hong, S. Malib, S.H. Pawar, RSC Adv. 5, 2338 (2015)

    Article  Google Scholar 

  26. J.H. Wu, Q. Jia, Sci. Rep. 6, 20506 (2016)

    Article  ADS  Google Scholar 

  27. K.C. Kao, Dielectric Phenomenon in Solids (Elesvier Academic Press, California, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aakash, Ghosh, M.P. & Mukherjee, S. Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites. Appl. Phys. A 125, 853 (2019). https://doi.org/10.1007/s00339-019-3155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3155-y

Navigation