Skip to main content

Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

Abstract

Recent developments show that the exceptional physical, optical, magnetic, and electrical properties of spinel ferrite (SF) nanomaterials have now attracted the attention as high-density data storage materials, catalysts, gas sensors, rechargeable lithium batteries, information storage systems, magnetic bulk cores, adsorbents, magnetic fluids, microwave absorbers, and medical diagnostics. The aim of this review consists on an overview on the methods of preparation, the crystal structure and application of SFs used in technology for the design of new materials and devices. The chapter begins with a review of the different synthesis methods commonly used for the preparation of SFs. Then, the structural features of spinel unit cell, crystal chemical parameters, and extrinsic magnetic and optical properties are described in this chapter. Since the magnetism of SFs depends not only on particle chemistry and phase but also on the particle size and environment, the role of cationic distribution and ion exchange interaction are explored in determining the magnetic properties of the system. In addition, the potential applications of SFs in different fields of technology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan Z, Gao J, Li Y, Zhang M et al (2015) Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv 5:92778–92787

    Article  Google Scholar 

  2. Olsson RT, Salazar-Alvarez G, Hedenqvist SM et al (2005) Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles. Chem Mater 17:5109–5118

    Article  Google Scholar 

  3. Latham AH, Williams ME (2008) Controlling transport and chemical functionality of magnetic nanoparticles. Acc Chem Res 41:411–420

    Article  Google Scholar 

  4. Moussaoui HE, Mahfoud T, Habouti S et al (2016) Synthesis and magnetic properties of tin spinel ferrites doped manganese. J Magn Magn Mater 405:181–186

    Article  ADS  Google Scholar 

  5. Mathew DS, Juang R (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65

    Article  Google Scholar 

  6. Carta D, Casula MF, Falqui A et al (2009) A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). J Phys Chem C 113:8606–8615

    Article  Google Scholar 

  7. Song Q, Ding Y, Wang ZL et al (2007) Tuning the thermal stability of molecular precursors for the nonhydrolytic synthesis of magnetic MnFe2O4 spinel nanocrystals. Chem Mater 19:4633–4638

    Article  Google Scholar 

  8. Kefeni KK, Msagati TAM, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B 215:37–55

    Article  Google Scholar 

  9. Pang YL, Lim S, Ong H et al (2016) Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram Int 42:9–34

    Article  Google Scholar 

  10. Goswami PP, Choudhury HA, Chakma S et al (2013) Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind Eng Chem Res 52:17848–17855

    Article  Google Scholar 

  11. Kurikka JL, Shafi VPM, Ulman A et al (2004) Mixed iron−manganese oxide nanoparticles. J Phys Chem B 108:14876–14883

    Article  Google Scholar 

  12. Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J Am Chem Soc 134:10182–10190

    Article  Google Scholar 

  13. Ni D, Lin Z, Xiaoling P et al (2015) Preparation and characterization of nickel-zinc ferrites by a solvothermal method. Rare Metal Mater Eng 44:2126–2131

    Article  Google Scholar 

  14. Li Z, Gao K, Han G, Wang R et al (2015) Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New J Chem 39:361–368

    Article  Google Scholar 

  15. Yin Y, Liu W, Huo N et al (2016) Synthesis of vesicle-like MgFe2O4/Graphene 3D network anode material with enhanced lithium storage performance. ACS Sustain Chem Eng. doi:10.1021/acssuschemeng.6b01949

    Google Scholar 

  16. Pereira C, Pereira AM, Fernandes C et al (2012) Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504

    Article  Google Scholar 

  17. Carta D, Loche D, Mountjoy G et al (2008) NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an X-ray absorption study. J Phys Chem C 112:15623–15630

    Article  Google Scholar 

  18. Mukhtar MW, Irfan M, Ahmad I et al (2015) Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications. J Magn Magn Mater 381:173–178

    Article  ADS  Google Scholar 

  19. Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018

    Article  Google Scholar 

  20. Jesudoss SK, Vijaya JJ, Kennedy LJ et al (2016) Studies on the efficient dual performance of Mn1–xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J Photochem Photobiol B 165:121–132. doi:10.1016/j.jphotobiol.2016.10.004

    Article  Google Scholar 

  21. Tadjarodi A, Imani M, Salehi M (2015) ZnFe2O4 nanoparticles and a clay encapsulated ZnFe2O4 nanocomposite: synthesis strategy, structural characteristics and the adsorption of dye pollutants in water. RSC Adv 5:56145–56156

    Article  Google Scholar 

  22. Marinca TF, Chicinaş I, Isnard O et al (2016) Nanocrystalline/nanosized manganese substituted nickel ferrites – Ni1−xMnxFe2O4 obtained by ceramic-mechanical milling route. Ceram Int 42(4):4754–4763. doi:10.1016/j.ceramint.2015.11.155

    Article  Google Scholar 

  23. Angadi VJ, Rudraswamy B, Sadhana K et al (2016) Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustion route. J Alloys Compd 656:5–12. doi:10.1016/j.jallcom.2015.09.222

    Article  Google Scholar 

  24. Singh C, Jauhar S, Kumar V et al (2015) Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater Chem Phys 156:188–197. doi:10.1016/j.matchemphys.2015.02.046

    Article  Google Scholar 

  25. Kotsikau D, Ivanovskaya M, Pankov V et al (2015) Structure and magnetic properties of manganese–zinc-ferrites prepared by spray pyrolysis method. Solid State Sci 39:69–73. doi:10.1016/j.solidstatesciences.2014.11.013

    Article  ADS  Google Scholar 

  26. Cortes MS, Martínez-Luevanos A, García-Cerda LA et al (2015) Nanostructured pure and substituted cobalt ferrites: fabrication by electrospinning and study of their magnetic properties. J Alloys Compd 653:290–297. doi:10.1016/j.jallcom.2015.08.262

    Article  Google Scholar 

  27. Cai X, Wang J, Li B et al (2016) Microwave absorption properties of LiZn ferrites hollow microspheres doped with La and Mg by self-reactive quenching technology. J Alloys Compd 657:608–615. doi:10.1016/j.jallcom.2015.10.153

    Article  Google Scholar 

  28. Ishaque M, Khan MA, Ali I et al (2015) Investigations on structural, electrical and dielectric properties of yttrium substituted Mg-ferrites. Ceram Int 41(3):4028–4034. doi:10.1016/j.ceramint.2014.11.093

    Article  Google Scholar 

  29. Anjum S, Hameed S, Bashir F (2015) Microstructural, structural, magnetic and optical properties of antimony doped cobalt spinel ferrites. Mater Today Proc 2(10):5329–5336. doi:10.1016/j.matpr.2015.11.045

    Article  Google Scholar 

  30. Cross WB, Affleck L, Kuznetsov MV et al (1999) Self-propagating high-temperature synthesis of ferrites MFe2O4 (M = Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. J Mater Chem 9:2545–2552. doi:10.1039/A904431K

    Article  Google Scholar 

  31. Peng E, Ding J, Xue JM (2014) Concentration-dependent magnetic hyperthermic response of manganese ferrite-loaded ultrasmall graphene oxide nanocomposites. New J Chem 38:2312–2319. doi:10.1039/C3NJ01555F

    Article  Google Scholar 

  32. Leal MP, Rivera-Fernández S, Franco JM et al (2015) Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Nanoscale 7:2050–2059. doi:10.1039/C4NR05781C

    Article  ADS  Google Scholar 

  33. Kaiser M (2016) Magnetic and electric modulus properties of ln substituted Mg–Mn–Cu ferrites. Mater Res Bull 73:452–458. doi:10.1016/j.materresbull.2015.09.015

    Article  Google Scholar 

  34. Kombaiah K, Vijaya JJ, Kennedy LJ, Bououdina M (2017) Optical, magnetic and structural properties of ZnFe2O4 nanoparticles synthesized by conventional and microwave assisted combustion method: a comparative investigation. Optik Int J Light Electron Optics 129:57–68. doi:10.1016/j.ijleo.2016.10.058

    Article  Google Scholar 

  35. Kurta SA, Mykytyn IM, Tatarchuk TR (2014) Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina. Nanoscale Res Lett 9:357. doi:10.1186/1556-276X-9-357

    Article  ADS  Google Scholar 

  36. Tatarchuk T (2014) Сatalytic oxidation of carbon monoxide on lithium-zinc ferrites with a spinel structure. Ekologia i Technika 32(2):70–75

    Google Scholar 

  37. Tatarchuk TR, Boyko EV, Yaremiy IP et al (2014) Synthesis crystal chemistry and antistructure modelling of CoFe2O4 nanoparticles prepared by citrate sol-gel method. Phys Chem Solid State 15(4):792–797

    Google Scholar 

  38. Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82:3279–3292. doi:10.1111/j.1151-2916.1999.tb02241.x

    Article  Google Scholar 

  39. Kane SN, Satalkar M (2017) Correlation between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 nanospinel ferrite: effect of Ni doping. J Mater Sci 52(6):3467–3477. doi:10.1007/s10853-016-0636-7

    Article  ADS  Google Scholar 

  40. Tatarchuk TR, Bououdina M, Paliychuk ND et al (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd 694(15):777–791. doi:10.1016/j.jallcom.2016.10.067

    Article  Google Scholar 

  41. Angadi VJ, Choudhury L, Sadhana K et al (2017) Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J Magn Magn Mater 424:1–11. doi:10.1016/j.jmmm.2016.10.050

    Article  ADS  Google Scholar 

  42. Lemine OM, Bououdina M, Sajieddine M et al (2011) Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4. Physica B 406(10):1989–1994. doi:10.1016/j.physb.2011.02.072

    Article  ADS  Google Scholar 

  43. Al-Saie AM, Bououdina M, Jaffar A et al (2011) The effect of annealing on the structure, magnetic properties and AC heating of CoFe2O4 for biomedical applications. J Alloys Compd 509:S393–S396. doi:10.1016/j.jallcom.2011.02.024

    Article  Google Scholar 

  44. Sundararajan M, Sailaja V, Kennedy LJ, Vijaya JJ (2017) Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram Int 43(1A):540–548. doi:10.1016/j.ceramint.2016.09.191

    Article  Google Scholar 

  45. Angadi VJ, Anupama AV, Choudhary HK et al (2017) Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics. J Solid State Chem 246:119–124. doi:10.1016/j.jssc.2016.11.017

    Article  ADS  Google Scholar 

  46. Angadi VJ, Rudraswamy B, Sadhana K et al (2016) Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels. J Magn Magn Mater 409:111–115. doi:10.1016/j.jmmm.2016.02.096

    Article  ADS  Google Scholar 

  47. Gawas SG, Meena SS, Yusuf SM et al (2016) Anisotropy and domain state dependent enhancement of single domain ferrimagnetism in cobalt substituted Ni–Zn ferrites. New J Chem 40:9275–9284. doi:10.1039/C6NJ02121B

    Article  Google Scholar 

  48. Singh SB, Srinivas C, Tirupanyam BV et al (2016) Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: study of exchange interactions on magnetic anisotropy. Ceram Int 42(16):19179–19186. doi:10.1016/j.ceramint.2016.09.081

    Article  Google Scholar 

  49. Sundararajan M, Kennedy LJ, Vijaya JJ et al (2015) Microwave combustion synthesis of Co1−xZnxFe2O4 (0⩽x⩽0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim. Acta Part A 140:421–430. doi:10.1016/j.saa.2014.12.035

    Article  ADS  Google Scholar 

  50. Manikandan A, Vijaya JJ, Mary JA et al (2014) Structural, optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method. J Ind Eng Chem 20(4):2077–2085. doi:10.1016/j.jiec.2013.09.035

    Article  Google Scholar 

  51. Lemine OM, Omri K, Zhang B et al (2012) Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattice Microst 52(4):793–799. doi:10.1016/j.spmi.2012.07.009

    Article  ADS  Google Scholar 

  52. Manikandan A, Kennedy LJ, Bououdina M et al (2014) Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J Magn Magn Mater 349:249–258. doi:10.1016/j.jmmm.2013.09.013

    Article  ADS  Google Scholar 

  53. Manikandan A, Vijaya JJ, Kennedy LJ et al (2013) Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xSrxFe2O4 nanoparticles. Ceram Int 39(5):5909–5917. doi:10.1016/j.ceramint.2013.01.012

    Article  Google Scholar 

  54. Manikandan A, Vijaya JJ, Kennedy LJ et al (2013) Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. J Mol Struct 1035:332–340. doi:10.1016/j.molstruc.2012.11.007

    Article  ADS  Google Scholar 

  55. Manikandan A, Vijaya JJ, Kennedy LJ (2013) Comparative study of pure and Ni-doped ZnFe2O4 nanoparticles for structural, optical and magnetic properties. Adv Mater Res 699:524–529

    Article  Google Scholar 

  56. Panchal S, Raghuvanshi S, Gehlot K et al (2016) Cationic distribution assisted tuning of magnetic properties of Li0.5-x/2ZnxFe2.5-x/2O4. AIP Adv 6(5):055930. doi:10.1063/1.4944517

    Article  ADS  Google Scholar 

  57. Khalaf KAM, Al-Rawas AD, Widatallah HM et al (2016) Influence of Zn2+ ions on the structural and electrical properties of Mg1−xZnxFeCrO4 spinels. J Alloys Compd 657:733–747. doi:10.1016/j.jallcom.2015.10.157

    Article  Google Scholar 

  58. Hashim M, Shirsath SE, Meena SS et al (2015) Manganese ferrite prepared using reverse micelle process: structural and magnetic properties characterization. J Alloys Compd 642:70–77. doi:10.1016/j.jallcom.2015.04.085

    Article  Google Scholar 

  59. Heiba ZK, Mohamed MB, Ahmed MA et al (2014) Cation distribution and dielectric properties of nanocrystalline gallium substituted nickel ferrite. J Alloys Compd 586:773–781. doi:10.1016/j.jallcom.2013.10.137

    Article  Google Scholar 

  60. Hemeda OM, Mostafa NY, Abd Elkader OH et al (2014) Solubility limits in Mn–Mg ferrites system under hydrothermal conditions. J Magn Magn Mater 364:39–46. doi:10.1016/j.jmmm.2014.03.061

    Article  ADS  Google Scholar 

  61. Manikandan A, Vijaya JJ, Sundararajan M et al (2013) Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattice Microst 64:118–131. doi:10.1016/j.spmi.2013.09.021

    Article  ADS  Google Scholar 

  62. Tanaka T, Shimazu R, Nagai H et al (2009) Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications. J Magn Magn Mater 321:1417–1420

    Article  ADS  Google Scholar 

  63. Jasso-Terán RA, Cortés-Hernández DA, Sánchez-Fuentes HJ et al (2017) Synthesis, characterization and hemolysis studies of Zn(1−x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications. J Magn Magn Mater. doi:10.1016/j.jmmm.2016.10.099 (in press)

    Google Scholar 

  64. Ruthradevi T, Akbar J, Kumar GS et al (2017) Investigations on nickel ferrite embedded calcium phosphate nanoparticles for biomedical applications. J Alloys Compd 695:3211–3219. doi:10.1016/j.jallcom.2016.11.300

    Article  Google Scholar 

  65. Latorre-Esteves M, Corte’s A, Torres-Lugo M et al (2009) Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. J Magn Magn Mater 321:3061–3066

    Article  ADS  Google Scholar 

  66. Falsafi F, Hashemi B, Mirzaei A et al (2017) Sm-doped cobalt ferrite nanoparticles: a novel sensing material for conductometric hydrogen leak sensor. Ceram Int 43:1029–1037. doi:10.1016/j.ceramint.2016.10.035

    Article  Google Scholar 

  67. Sandu I, Presmanes L, Alphonse P et al (2006) Nanostructured cobalt manganese ferrite thin films for gas sensor application. Thin Solid Films 495:130–133

    Article  ADS  Google Scholar 

  68. Wen T, Zhu W, Xue C et al (2014) Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron 56:180–185

    Article  Google Scholar 

  69. Praveena K, Chen H-W, Liu H-L et al (2016) Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J Magn Magn Mater 420:129–142

    Article  ADS  Google Scholar 

  70. Li B, Yue Z-X, Qi X-W et al (2003) High Mn content NiCuZn ferrite for multiplayer chip inductor application. Mater Sci Eng B 99:252–254

    Article  Google Scholar 

  71. Yang Q, Zhang H, Liu Y et al (2009) Microstructure and magnetic properties of microwave sintered M-type barium ferrite, for application in LTCC devices. Mater Lett 63:406–408

    Article  Google Scholar 

  72. Reddy NR, Ramana MV, Rajitha G et al (2009) Stress insensitive NiCuZn ferrite compositions for microinductor applications. Curr Appl Phys 9:317–323

    Article  ADS  Google Scholar 

  73. Kumbhar VS, Jagadale AD, Shinde NM et al (2012) Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl Surf Sci 259:39–43

    Article  ADS  Google Scholar 

  74. Bashir B, Shaheen W, Asghar M et al (2016) Copper doped manganese ferrites nanoparticles anchored on graphene nano-sheets for high performance energy storage applications. J Alloys Compd 695:881–887. doi:10.1016/j.jallcom.2016.10.183

    Article  Google Scholar 

  75. Bindu K, Sridharan K, Ajith KM et al (2016) Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2 sensor and supercapacitor applications. Electrochim Acta 217:139–149

    Article  Google Scholar 

  76. Charalampos AS, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405:54–61

    Article  Google Scholar 

  77. Dadfar MR, Ebrahimi SAS, Masoudpanah SM (2015) Sol–gel synthesis and characterization of SrFe12O19/TiO2 nanocomposites. J Supercond Nov Magn 28(1):89–94

    Article  Google Scholar 

  78. Meng P, Xiong K, Ju K (2015) Wideband and enhanced microwave absorption performance of doped barium ferrite. J Magn Magn Mater 385:407–411

    Article  ADS  Google Scholar 

  79. Zhang X-J, Wang G-S, Cao W-Q et al (2014) Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces 6:7471–7478

    Article  Google Scholar 

  80. Chang S, Kangning S, Pengfei C (2012) Microwave absorption properties of Ce-substituted M-type barium ferrite. J Magn Magn Mater 324(5):802–805

    Article  ADS  Google Scholar 

  81. Tyagi S, Baskey HB, Agarwala RC et al (2011) Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram Int 37(7):2631–2641

    Article  Google Scholar 

  82. Casbeer E, Sharma VK, Li X-Z (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14

    Article  Google Scholar 

  83. Valero-Luna C, Palomares-Sanchéz SA, Ruíz F (2016) Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of methylene blue. Catal Today 266:110–119. doi:10.1016/j.cattod.2015.08.049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Tatarchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tatarchuk, T., Bououdina, M., Judith Vijaya, J., John Kennedy, L. (2017). Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_22

Download citation

Publish with us

Policies and ethics