Skip to main content

Advertisement

Log in

Widespread amplification of amplified fragment length polymorphisms (AFLPs) in marine Antarctic animals

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Although recent years have witnessed a rapid growth in the number of genetic studies of Antarctic organisms, relatively few studies have so far used nuclear markers, possibly due to the perceived cost and difficulty of isolating markers such as microsatellites. However, an often overlooked alternative is to use amplified fragment length polymorphisms (AFLPs), a versatile and low-cost method capable of generating large numbers of predominantly nuclear loci in virtually any organism. We conducted a literature review of population genetic studies of Antarctic organisms, finding that fewer than 10% used AFLPs. Moreover, a strong taxonomic bias was found, with studies employing mitochondrial DNA or microsatellites focussing predominantly on animals, while those using AFLPs were mostly of plants or lower organisms. Consequently, we explored the extent to which AFLPs amplify across a range of Antarctic marine animal taxa by genotyping eight individuals each of twelve different species, ranging from echinoderms through soft corals to pelagic fish, at four selective primer combinations. AFLPs readily amplified across all of the taxa, generating between 32 and 84 loci per species, with on average 56.5% of these being polymorphic. In general, levels of polymorphism bore little relationship with expectations based on larger populations of broadcast-spawning species being more variable, though we did find a tentative positive correlation between the number of AFLP bands amplified and a measure of effective population size. Our study lends further support for the utility and ease of use of AFLPs and their suitability for studies of Antarctic species across a wide range of taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addison JA, Hart MW (2005) Spawning, copulation and inbreeding coefficients in marine invertebrates. Biol Lett 1:450–453. doi:10.1098/rsbl.2005.0353

    Article  PubMed  CAS  Google Scholar 

  • Ahn I-Y (1994) Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbour, King George Island: benthic environment and an adaptive strategy. Mem Natl Inst Polar Res 50:1–10

    Google Scholar 

  • Amos W (2009) Sexual selection does not influence minisatellite mutation rate. BMC Evol Biol 9:5. doi:10.1186/1471-2148-9-5

    Article  PubMed  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744. doi:10.1046/j.1365-294X.2003.02063.x

    Article  PubMed  Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914. doi:10.1111/j.1365-294X.2005.02655.x

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273. doi:10.1111/j.1365-294X.2004.02346.x

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Taberlet P, Miaud C, Pompanon F (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol 23:773–783. doi:10.1093/molbev/msj087

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Ehrich D, Mane S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758. doi:10.1111/j.1365-294X.2007.03435.x

    Article  PubMed  CAS  Google Scholar 

  • Bosch I, Pearse JS (1988) Seasonal pelagic development and Juvenile recruitment of the bivalve Laternula elliptica in McMurdo sound, Antarctica. Am Zool 28:A89–A89

    Google Scholar 

  • Bosch I, Pearse JS (1990) Developmental types of shallow-water asteroids of McMurdo Sound, Antarctica. Mar Biol 104:41–46

    Article  Google Scholar 

  • Bosch I, Beauchamp KA, Steele ME, Pearse JS (1987) Development, metamorphosis, and seasonal abundance of embryos and larvae of the Antarctic Sea-Urchin Sterechinus neumayeri. Biol Bull 173:126–135

    Article  Google Scholar 

  • Bowden DA, Clarke A, Peck LS (2009) Seasonal variation in the diversity and abundance of pelagic larvae of Antarctic marine invertebrates. Mar Biol 156:2033–2047. doi:10.1007/s00227-009-1235-9

    Article  Google Scholar 

  • Brandstrom M, Ellegren H (2008) Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res 18:881–887. doi:10.1101/gr.075242.107

    Article  PubMed  Google Scholar 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Tree 18:249–256. doi:10.1016/S-169-5347(03)00018-1

    Google Scholar 

  • Caballero A, Quesada H, Rolán-Alvarez E (2008) Impact of AFLP fragment size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics 179:539–554. doi:10.1534/genetics.107.083246

    Article  PubMed  Google Scholar 

  • Casaux R (1998) The contrasting diet of Harpagifer antarcticus (Notothenioidei, Harpagiferidae) at two localities of the South Shetland Islands, Antarctica. Polar Biol 19:283–285. doi:10.1007/s003000050246

    Article  Google Scholar 

  • Clarke A (2000) Evolution in the cold. Antarct Sci 112:257

    Google Scholar 

  • Colman JG. Life history biology of the Antarctic Bivalve Yoldia eightsi. BAS unpublished report H/1990/N3, Cambridge, UK

  • Crawley MJ (2002) Statistical computing, an introduction to data analysis using S-plus. Wiley, Chichester

    Google Scholar 

  • Dasmahapatra KK, Lacy RC, Amos W (2007) Estimating levels of inbreeding using AFLP markers. Heredity 100:286–295. doi:10.1038/sj.hdy.6801075

    Article  PubMed  Google Scholar 

  • Dasmahapatra KK, Hoffman JI, Amos W (2009) Pinniped phylogenetic relationships inferred using AFLP markers. Heredity 103:168–177. doi:10.1038/hdy.2009.25

    Google Scholar 

  • Dasmahapatra KK, Elias M, Hill RI, Hoffman JI, Mallet J (2010) Mitochondrial DNA barcoding detects some species that are real, and some that are not. Mol Ecol Resour 10:264–273. doi:10.1111/j.1755-0998.2009.02763.x

    Article  PubMed  CAS  Google Scholar 

  • Davenport J (1988) The Feeding Mechanism of Yoldia (=Aequiyoldia) eightsi (Courthouy). Proc Roy Soc Lond B Biol 232:431–442

    Article  Google Scholar 

  • Dayton PK, Oliver JS (1977) Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197:55–58

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK, Robillia Ga, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMudo Sound, Antarctica. Ecol Monogr 44:105–128

    Article  Google Scholar 

  • Dearborn JH (1977) Foods and feeding characteristics of Antarctic asteroids and ophiuroids. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Proceedings of the third SCAR symposium on Antarctic Biology, Smithsonian Institution. Gulf Publishing, Washington, DC, pp 293–326

  • Dyer AT, Leonard KJ (2000) Contamination, error, and nonspecific molecular tools. Phytopathol 90:565–567. doi:10.1094/PHYTO.2000.90.6.565

    Article  CAS  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. doi:10.1038/nrg1348

    Article  PubMed  CAS  Google Scholar 

  • Fauchald K, Jumars P (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Ann Rev 17:193–284

    Google Scholar 

  • Gambi MC, Patti FP, Micaletto G, Giangrande A (2001) Diversity of reproductive features in some Antarctic polynoid and sabellid polychaetes, with a description of Demonax polarsterni sp (Polychaeta, Sabellidae). Polar Biol 24:883–891. doi:10.1007/s003000100287

    Article  Google Scholar 

  • Gerber S, Mariette S, Streiff R, Bodenes C, Kremer A (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048. doi:10.1046/j.1365-294x.2000.00961.x

    Article  PubMed  CAS  Google Scholar 

  • Giraud M, Matic I, Tenaillon O, Radman M, Fons M, Taddei F (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608. doi:10.1126/science.1056421

    Article  PubMed  CAS  Google Scholar 

  • Golledge NR, Everest JD, Bradwell T, Johnson JS (2010) Lichenometry on Adelaide Island, Antarctic Peninsula: size frequency studies, growth rates and snow patches. Geografiska Annular A 91:111–124. doi:10.1111/j.1468-0459.2010x

    Article  Google Scholar 

  • Grange LJ, Tyler PA, Peck LS, Cornelius N (2004) Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Mar Ecol Prog Ser 278:141–155. doi:10.3354/meps278141

    Article  Google Scholar 

  • Held C, Leese F (2007) The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–521. doi:10.1007/s00300-006-0210-x

    Article  Google Scholar 

  • Helyar SJ, Hemmer-hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, Cariani A, Maes GE, Diopere E, Carvalho GR, Nielsen EE (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Res 11:123–136. doi:10.1111/j.1755-0998.2010.02943.x

    Article  Google Scholar 

  • Hoffman JI (2011) Gene discovery in the Antarctic fur seal (Arctocephalus gazella) skin transcriptome. Mol Ecol Resour 11:703–710. doi:10.1111/j.1755-0998.2011.02999.x

    Article  PubMed  Google Scholar 

  • Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612. doi:10.1111/j.1365-294X.2004.02419.x

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JI, Dasmahapatra KK, Amos W, Phillips CD, Gelatt TS, Bickham JW (2009) Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation. Mol Ecol 18:2961–2978. doi:10.1111/j.1365-294X.2009.04246.x

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JI, Peck LS, Hillyard G, Zieritz A, Clark MS (2010) No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Mar Biol 157:765–778. doi:10.1007/s00227-009-1360-5

    Article  CAS  Google Scholar 

  • Hoffman JI, Clarke A, Linse K, Peck L (2011a) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296. doi:10.1007/s00227-010-1558-6

    Article  Google Scholar 

  • Hoffman JI, Peck L, Linse K, Clarke AC (2011b) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Hered 102:55–66. doi:10.1093/jhered/esq094

    Article  PubMed  CAS  Google Scholar 

  • Huang SW, Yu HT (2003) Genetic variation of microsatellite loci in the major histocompatibility complex (MHC) region in the southeast Asian house mouse (Mus musculus castaneus). Genetica 119:201–218

    Article  PubMed  CAS  Google Scholar 

  • Huang CW, Cheng YS, Rouvier R, Yang KT, Wu CP, Huang MC (2007) AFLP fingerprinting for paternity testing in ducks. Br Poult Sci 48:323–330. doi:10.1080/00071660701370459

    Article  PubMed  CAS  Google Scholar 

  • Ihaka R, Gentleman GR (1996) A language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480. doi:10.1111/j.1365-294X.2006.03027.x

    Article  PubMed  CAS  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007. doi:10.1093/molbev/msh073

    Article  PubMed  CAS  Google Scholar 

  • Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. doi:10.1038/nature03959

    PubMed  CAS  Google Scholar 

  • Mariette S, LeCorre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol Ecol 11:1145–1156. doi:10.1046/j.1365-294X.2002.01519.x

    Article  PubMed  CAS  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604. doi:10.1029/2005GL024042

    Article  Google Scholar 

  • Metzgar D, Wills C (2000) Evidence for the adaptive evolution of mutation rates. Cell 101:581–584

    Article  PubMed  CAS  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–108. doi:10.1016/j.tplants.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • Milot E, Weimerskirch H, Duchesne P, Bernatchez L (2007) Surviving with low genetic diversity: the case of albatrosses. Proc Roy Soc Lond B Biol 274. doi:10.1046/j.1365-2540.2001.00940.x

  • Møller AP, Cuervo JJ (2003) Sexual selection, germline mutation rate and sperm competition. BMC Evol Biol 3:6. doi:10.1186/1471-2148-3-6

    Article  PubMed  Google Scholar 

  • Morin PA et al (2004) SNPs in ecology, evolution and conservation. Tree 19:208–216. doi:10.1016/j.tree.2004.01.009

    Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  • Nakaoka M (1994) Size-dependent reproductive traits of Yoldia notabilis (Bivalvia, Protobranchia). Mar Ecol Prog Ser 114:129–137

    Article  Google Scholar 

  • Nunes VL, Beaumont MA, Butlin RK, Paulo OS (2011) Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient. Mol Ecol 20:193–205. doi:10.1111/j.1365-294X.2010.04936.x

    Article  PubMed  Google Scholar 

  • O’Hanlon PC, Peakall R (2000) A simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Mol Ecol 9:815–816. doi:10.1046/j.1365-294x.2000.00924.x

    Article  PubMed  Google Scholar 

  • Obermüller BE, Morley SA, Barnes DKA, Peck LS (2010) Seasonal physiology and ecology of Antarctic marine benthic predators and scavengers. Mar Ecol Prog Ser 415:109–126. doi:10.3354/meps08735

    Article  Google Scholar 

  • Pearse JS, Giese AC (1966) Food, reproduction, and organic constitution of the common Antarctic echinoid Sterechinus neumayeri (Meissner). Biol Bull 130:387–401

    Article  PubMed  CAS  Google Scholar 

  • Peck LS (1993) Larval development in the Antarctic Nemertean Parborlasia corrugatus (Heteronemertea, Lineidae). Mar Biol 116:301–310

    Article  Google Scholar 

  • Peck LS (2001) Ecology of articulates. In: Carlson S, Sandy M (eds) Short course on brachiopods. Geological Society of the USA and University of Kansas, pp 171–184

  • Peck LS, Robinson K (1994) Pelagic larval development in the brooding Antarctic brachiopod Liothyrella uva. Mar Biol 120:279–286

    Article  Google Scholar 

  • Peck LS, Barnes DKA, Willmott J (2005) Responses to extreme seasonality in food supply: diet plasticity in Antarctic brachiopods. Mar Biol 147:453–463. doi:10.1007/s00227-005-1591-z

    Article  Google Scholar 

  • Peck LS, Clarke A, Chapman AL (2006) Metabolism and development of pelagic larvae of Antarctic gastropods with mixed reproductive strategies. Mar Ecol Prog Ser 318:213–220. doi:10.3354/meps318213

    Article  Google Scholar 

  • Poutiers JM (1998) Gastropods in: FAO species identification guide for fisheries purposes: the living marine resources of the Western Central Pacific Volume 1. Seaweeds, corals, bivalves and gastropods. Pub. Rome FAO, p 399

  • Rogers A (2007) Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos Trans R Soc Lond [Biol] 362:2191–2214. doi:10.1098/rstb.2006.1948

    Google Scholar 

  • Santucci F, Ibrahim KM, Bruzzone A, Hewit GM (2007) Selection on MHC-linked microsatellite loci in sheep populations. Heredity 99:340–348. doi:10.1038/sj.hdy.6801006

    Article  PubMed  CAS  Google Scholar 

  • Savelkoul PHM, Aarts HJM, De Haas J, Dijkshoorn L, Dium B, Otsen M, Rademaker JLW, Schouls L, Lenstra JA (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37:3083–3091

    PubMed  CAS  Google Scholar 

  • Shabica SV (1971) The general ecology of the Antarctic limpet Patinigera polaris. Antarct J US 6:160–162

    Google Scholar 

  • Shabica SV (1976) The natural history of the Antarctic limpet Patinigera polaris (Humbron & Jacquinot) PhD Diss. Oregon State University, Corvallis

    Google Scholar 

  • Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton JM (2009) Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97–107

    Article  PubMed  CAS  Google Scholar 

  • Slattery M, McClintock JB (1997) An overview of the population biology and chemical ecology of three species of Antarctic soft corals. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic Communities. Species, structure and Survival. Pub. CUP, pp 309–315

  • Stanwell-Smith D, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull 194:44–52

    Article  Google Scholar 

  • Urban HJ, Mercuri G (1998) Population dynamics of the bivalve Laternula elliptica from Potter cove, King George Island, South Shetland islands. Antarct Sci 10:153–160

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151. doi:10.1046/j.0962-1083.2001.01415.x

    Article  PubMed  CAS  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647. doi:10.1111/j.1365-294X.2008.03666.x

    Google Scholar 

  • Vorwerk S, Forneck A (2007) Analysis of genetic variation within clonal lineages of grape phylloxera (Daktulosphaira vitifoliae Fitch) using AFLP fingerprinting and DNA sequencing. Genome 50:660–667. doi:10.1139/G07-046

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • White MG, Burren PJ (1992) Reproduction and larval growth of Harpagifer antarcticus Nybelin (Pisces, Notothenioidei). Antarct Sci 4:421–430

    Google Scholar 

  • Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Exp Biol 14:611–619

    CAS  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the Rothera dive team for providing samples, Peter Fretwell for preparing Fig. 1 and Elaine Fitzcharles for performing the DNA extractions. Overall dive support was provided by the Natural Environment Research Council (NERC) National Facility for Scientific Diving at Oban. JIH was funded by a NERC British Antarctic Survey (BAS) Strategic Alliance Fellowship. This work was conducted by MSC and LSP within the Adaptations and Physiology Work Package as part of the BAS Polar Sciences for Planet Earth programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, J.I., Clark, M.S., Amos, W. et al. Widespread amplification of amplified fragment length polymorphisms (AFLPs) in marine Antarctic animals. Polar Biol 35, 919–929 (2012). https://doi.org/10.1007/s00300-011-1139-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1139-2

Keywords

Navigation