Skip to main content
Log in

Gene mapping in the wild with SNPs: guidelines and future directions

  • Published:
Genetica Aims and scope Submit manuscript

An Erratum to this article was published on 04 March 2010

Abstract

One of the biggest challenges facing evolutionary biologists is to identify and understand loci that explain fitness variation in natural populations. This review describes how genetic (linkage) mapping with single nucleotide polymorphism (SNP) markers can lead to great progress in this area. Strategies for SNP discovery and SNP genotyping are described and an overview of how to model SNP genotype information in mapping studies is presented. Finally, the opportunity afforded by new generation sequencing and typing technologies to map fitness genes by genome-wide association studies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RI, Hallen HE, Pringle A (2006) PRIMER NOTE. Using the incomplete genome of the ectomycorrhizal fungus Amanita bisporigera to identify molecular polymorphisms in the related Amanita phalloides. Mol Ecol Notes 6:218–220

    Article  CAS  Google Scholar 

  • Aerts J, Megens HJ, Veenendaal T, Ovcharenko I, Crooijmans R et al (2007) Extent of linkage disequilibrium in chicken. Cytogenet Genome Res 117:338–345

    Article  CAS  PubMed  Google Scholar 

  • Aitken N, Smith S, Schwarz C, Morin PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 13:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Backström N, Brandström M, Gustafsson L, Qvarnström A, Cheng H et al (2006a) Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174:377–386

    Article  PubMed  Google Scholar 

  • Backström N, Qvarnström A, Gustafsson L, Ellegren H (2006b) Levels of linkage disequilibrium in a wild bird population. Biol Lett 2:435–438

    Article  PubMed  Google Scholar 

  • Backstrom N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964–980

    Article  PubMed  Google Scholar 

  • Barker G, Batley J, O’Sullivan H, Edwards KJ, Edwards D (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422

    Article  CAS  PubMed  Google Scholar 

  • Beldade P, Rudd S, Gruber JD, Long AD (2006) A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model. BMC Genomics 7:130

    Article  PubMed  Google Scholar 

  • Bell PA, Chaturvedi S, Gelfand CA, Huang CY, Kochersperger M et al (2002) SNPstream (R) UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 70

  • Beraldi D, McRae AF, Gratten J, Slate J, Visscher PM et al (2006) Development of a linkage map and mapping of phenotypic polymorphisms in a free-living population of Soay sheep (Ovis aries). Genetics 173:1521–1537

    Article  CAS  PubMed  Google Scholar 

  • Beraldi D, McRae AF, Gratten J, Pilkington JG, Slate J et al (2007a) Quantitative trait loci (QTL) mapping of resistance to strongyles and coccidia in the free-living Soay sheep (Ovis aries). Int J Parasitol 37:121–129

    Article  CAS  PubMed  Google Scholar 

  • Beraldi D, McRae AF, Gratten J, Slate J, Visscher P et al (2007b) Mapping QTL underlying fitness-related traits in a free-living sheep population. Evolution 61:1403–1416

    Article  PubMed  Google Scholar 

  • Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P et al (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 98:581–584

    Article  CAS  PubMed  Google Scholar 

  • Butlin RK (2008) Population genomics and speciation. Genetica (this issue). doi:10.1007/s10709-008-9321-3

    PubMed  Google Scholar 

  • Cappuccio I, Pariset L, Ajmone-Marsan P, Dunner S, Cortes O et al (2006) Allele frequencies and diversity parameters of 27 single nucleotide polymorphisms within and across goat breeds. Mol Ecol Notes 6:992–997

    Article  CAS  Google Scholar 

  • Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L et al (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. American Journal Of Human Genetics 74:106–120

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Abecasis GR (2006) Estimating the power of variance component linkage analysis in large pedigrees. Genet Epidemiol 30:471–484

    Article  PubMed  Google Scholar 

  • Chen WM, Abecasis GR (2007) Family-based association tests for genomewide association scans. Am J Hum Genet 81:913–926

    Article  CAS  PubMed  Google Scholar 

  • Chen K, McLellan MD, Ding L, Wendl MC, Kasai Y et al (2007) PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing data. Genome Res 17:659–666

    Article  CAS  PubMed  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-Qtl linkage and estimating Qtl gene effect and map location using a saturated genetic-map. Genetics 134:943–951

    CAS  PubMed  Google Scholar 

  • Docherty S, Butcher L, Schalkwyk L, Plomin R (2007) Applicability of DNA pools on 500 K SNP microarrays for cost-effective initial screens in genomewide association studies. BMC Genomics 8:214

    Article  PubMed  Google Scholar 

  • Elfstrom CM, Smith CT, Seeb JE (2006) Thirty-two single nucleotide polymorphism markers for high-throughput genotyping of sockeye salmon. Mol Ecol Notes 6:1255–1259

    Article  CAS  Google Scholar 

  • Elfstrom CM, Smith CT, Seeb LW (2007) Thirty-eight single nucleotide polymorphism markers for high-throughput genotyping of chum salmon. Mol Ecol Notes 7:1211–1215

    Article  CAS  Google Scholar 

  • Ellegren H (2008) Sequencing goes 454 and takes large-scale genomics into the wild. Mol Ecol 17:1629–1631

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrug SC, Freking BA, Smith TPL, Rohrer GA, Keele JW (2002) Single nucleotide polymorphism (SNP) discovery in porcine expressed genes. Anim Genet 33:186–195

    Article  CAS  PubMed  Google Scholar 

  • Farnir F, Coppieters W, Arranz J-J, Berzi P, Cambisano N et al (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227

    Article  CAS  PubMed  Google Scholar 

  • Feau N, Bergeron M-J, Joly DL, Roussel F, Hamelin RC (2007) Detection and validation of EST-derived SNPs for poplar leaf rust Melampsora medusae f. sp. deltoidae. Mol Ecol Notes 7:1222–1228

    Article  CAS  Google Scholar 

  • Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, Sandal N, Stougaard J, Schauser L (2006) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC genomics 7:207

    Article  PubMed  Google Scholar 

  • George AW, Visscher PM, Haley CS (2000) Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics 156:2081–2092

    CAS  PubMed  Google Scholar 

  • Goldstein DB (2001) Islands of linkage disequilibrium. Nat Genet 29:109–111

    Article  CAS  PubMed  Google Scholar 

  • Gratten J, Beraldi D, Lowder BV, McRae AF, Visscher PM et al (2007) Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep. Proc R Soc B Biol Sci 274:619–626

    Article  CAS  Google Scholar 

  • Gratten J, Wilson AJ, McRae AF, Beraldi D, Visscher PM et al (2008) A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319:318–320

    Article  CAS  PubMed  Google Scholar 

  • Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549

    Article  CAS  PubMed  Google Scholar 

  • Hale M, Jensen H, Birkhead T, Burke T, Slate J (2008) A comparison of synteny and gene order on the homologue of chicken chromosome 7 between two passerine species and between passerines and chicken. Cytogenet Genome Res 121:120–129

    Article  CAS  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    CAS  PubMed  Google Scholar 

  • Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207

    CAS  PubMed  Google Scholar 

  • Hansson B, Åkesson M, Slate J, Pemberton JM (2005) Linkage mapping reveals sex-dimorphic map distances in a passerine bird. Proc R Soc B Biol Sci 272:2289–2298

    Article  CAS  Google Scholar 

  • Hardenbol P, Yu F, Belmont J, MacKenzie J, Bruckner C et al (2005) Highly multiplexed molecular inversion probe genotyping: over 10, 000 targeted SNPs genotyped in a single tube assay. Genome Res 15:269–275

    Article  CAS  PubMed  Google Scholar 

  • Heifetz EM, Fulton JE, O’Sullivan N, Zhao H, Dekkers JCM et al (2005) Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations. Genetics 171:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Sanchez J, Visscher P, Plastow G, Haley C (2003) Candidate gene analysis for quantitative traits using the transmission disequilibrium test: the example of the melanocortin 4-receptor in pigs. Genetics 164:637–644

    CAS  PubMed  Google Scholar 

  • Hinten GN, Hale MC, Gratten J, Mossman JA, Lowder BV et al (2007) SNP-SCALE: SNP scoring by colour and length exclusion. Mol Ecol Notes 7:377–388

    Article  CAS  Google Scholar 

  • Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Resour 8:3–17

    Article  CAS  Google Scholar 

  • Irizarry K, Kustanovich V, Li C, Brown N, Nelson S et al (2000) Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nat Genet 26:233–236

    Article  CAS  PubMed  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  Google Scholar 

  • Kenta T, Gratten J, Hinten GN, Slate J, Butlin RK et al (2008) Multiplex SNP_SCALE: a cost:effective medium-throughput SNP genotyping method. Mol Ecol Resour (in press)

  • Khatkar MS, Zenger KR, Hobbs M, Hawken RJ, Cavanagh JAL et al (2007) A primary assembly of a bovine haplotype block map based on a 15, 036-single-nucleotide polymorphism panel genotyped in Holstein-Friesian cattle. Genetics 176:763–772

    Article  CAS  PubMed  Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B Biol Sci 359:873–890

    Article  PubMed  Google Scholar 

  • Kruuk LEB, Hill WG (2008) Introduction. Evolutionary dynamics of wild populations: the use of long-term pedigree data. Proc R Soc B Biol Sci 275:593–596

    Article  CAS  Google Scholar 

  • Kruuk LEB, Slate J, Wilson AJ (2008) New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu Rev Ecol Evol Syst. doi:10.1146/annurev.ecolsys.39.110707.173542

    Google Scholar 

  • Leal SM, Yan K, Müller-Myhsok B (2005) SimPed: a simulation program to generate haplotype and genotype data for pedigree structures. Hum Hered 60:119

    Article  PubMed  Google Scholar 

  • Lin R-C, Yao C-T, Lo W-S, Li S-H (2007) Characterization and the broad cross-species applicability of 20 anonymous nuclear loci isolated from the Taiwan Hwamei (Garrulax taewanus). Mol Ecol Notes 7:156–159

    Article  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Lyons L, Laughlin T, Copeland NG, Jenkins NA, Womack JE et al (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet 15:47–56

    Article  CAS  PubMed  Google Scholar 

  • Macgregor S, Zhao ZZ, Henders A, Nicholas MG, Montgomery GW et al (2008) Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucl Acids Res 36(6):e35

    Article  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133

    CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  Google Scholar 

  • Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z et al (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23:452

    Article  CAS  PubMed  Google Scholar 

  • McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J et al (2007) Whole genome linkage disequilibrium maps in cattle. BMC Genetics 8:74

    Article  PubMed  Google Scholar 

  • Merilä J, Sheldon BC, Kruuk LEB (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112:199–222

    Article  PubMed  Google Scholar 

  • Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216

    Article  Google Scholar 

  • Morin PA, Aitken NC, Rubio-Cisneros N, Dizon AE, Mesnick S (2007) Characterization of 18 SNP markers for sperm whale (Physeter macrocephalus). Mol Ecol Notes 7:626–630

    Article  CAS  Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102:2442–2447

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  CAS  PubMed  Google Scholar 

  • Nsengimana J, Baret P, Haley CS, Visscher PM (2004) Linkage disequilibrium in the domesticated pig. Genetics 166:1395–1404

    Article  PubMed  Google Scholar 

  • Palumbi S (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Moritz C, Mable B (eds) Molecular systematics. Sinauer, Sunderland, Massachusetts, pp 205–247

    Google Scholar 

  • Piepho HP (2000) Optimal marker density for interval mapping in a backcross population. Heredity 84:437–440

    Article  PubMed  Google Scholar 

  • Quinlan AR, Stewart DA, Stromberg MP, Marth GT (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods 5:179

    Article  CAS  PubMed  Google Scholar 

  • Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC et al (2001) Linkage disequilibrium in the human genome. Nature 411:199–204

    Article  CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  CAS  PubMed  Google Scholar 

  • Rogers SM, Bernatchez L (2005) Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol Ecol 14:351–361

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum EB, Belfiore NM, Moritz C (2007) Anonymous nuclear markers for the eastern fence lizard, Sceloporus undulatus. Mol Ecol Notes 7:113–116

    Article  CAS  Google Scholar 

  • Ryynanen HJ, Primmer CR (2004) Primers for sequence characterization and polymorphism detection in the Atlantic salmon (Salmo salar) growth hormone 1 (GH1) gene. Mol Ecol Notes 4:664–667

    Article  Google Scholar 

  • Ryynanen HJ, Primmer CR (2006) Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes. BMC Genomics 7:192

    Article  PubMed  Google Scholar 

  • Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T et al (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257

    Article  PubMed  Google Scholar 

  • Slate J (2005) QTL mapping in natural populations: progress, caveats and future directions. Mol Ecol 14:363–379

    Article  CAS  PubMed  Google Scholar 

  • Slate J (2008) Robustness of linkage maps in natural populations: a simulation study. Proc R Soc B Biol Sci 275:695–702

    Article  Google Scholar 

  • Slate J, Pemberton JM (2007) Admixture and patterns of linkage disequilibrium in a free-living vertebrate population. J Evol Biol 20:1415–1427

    Article  CAS  PubMed  Google Scholar 

  • Slate J, Visscher PM, MacGregor S, Stevens D, Tate ML et al (2002) A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 162:1863–1873

    CAS  PubMed  Google Scholar 

  • Stapley J, Birkhead T, Burke T, Slate J (2008) A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution. Genetics 179:651–667

    Article  CAS  PubMed  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T et al (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493

    Article  CAS  PubMed  Google Scholar 

  • Stone RT, Grosse WM, Casas E, Smith TPL, Keele JW et al (2002) Use of bovine EST data and human genomic sequences to map 100 gene-specific bovine markers. Mamm Genome 13:211–215

    Article  CAS  PubMed  Google Scholar 

  • Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF et al (2004) Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 14:2388–2396

    Article  CAS  PubMed  Google Scholar 

  • Syvanen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Vosman B, Voorrips R, van der Linden CG, Leunissen J (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinformatics 7:438

    Article  PubMed  Google Scholar 

  • Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC et al (2005) The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 16:398–406

    PubMed  Google Scholar 

  • Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247

    Article  PubMed  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL et al (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Hopper JL (2001) Power of regression and maximum likelihood methods to map QTL from sib-pair and DZ twin data. Ann Hum Genet 65:583–601

    Article  CAS  PubMed  Google Scholar 

  • Weiss KM, Clark AG (2002) Linkage disequilibrium and the mapping of complex human traits. Trends Genet 18:19–24

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Calabrese P, Nordborg M, Sun FZ (2002) Haplotype block structure and its applications to association studies: power and study designs. Am J Hum Genet 71:1386–1394

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wheeler DA, Yakub I, Wei S, Sood R et al (2005) SNPdetector: a software tool for sensitive and accurate SNP detection. PLoS Comput Biol 1:e53

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This article was prepared for a workshop on Ecological Genomics that was organised by Jacob Höglund and Gernot Segelbacher, and funded by the European Science Foundation (ESF). The authors have benefitted from insightful discussion on this and related topics with Terry Burke, Peter Visscher, Gavin Hinten and Allan McRae. Peter Visscher made the suggestion to study the variance in halfsib IBD coefficients as an indicator of marker informativeness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Slate.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10709-010-9445-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slate, J., Gratten, J., Beraldi, D. et al. Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136, 97–107 (2009). https://doi.org/10.1007/s10709-008-9317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9317-z

Keywords

Navigation