Skip to main content
Log in

Isolation, characterization, and evaluation of three Citrus sinensis-derived constitutive gene promoters

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Regulatory sequences from the citrus constitutive genes cyclophilin (CsCYP), glyceraldehyde-3-phosphate dehydrogenase C2 (CsGAPC2), and elongation factor 1-alpha (CsEF1) were isolated, fused to the uidA gene, and qualitatively and quantitatively evaluated in transgenic sweet orange plants.

Abstract

The 5′ upstream region of a gene (the promoter) is the most important component for the initiation and regulation of gene transcription of both native genes and transgenes in plants. The isolation and characterization of gene regulatory sequences are essential to the development of intragenic or cisgenic genetic manipulation strategies, which imply the use of genetic material from the same species or from closely related species. We describe herein the isolation and evaluation of the promoter sequence from three constitutively expressed citrus genes: cyclophilin (CsCYP), glyceraldehyde-3-phosphate dehydrogenase C2 (CsGAPC2), and elongation factor 1-alpha (CsEF1). The functionality of the promoters was confirmed by a histochemical GUS assay in leaves, stems, and roots of stably transformed citrus plants expressing the promoter-uidA construct. Lower uidA mRNA levels were detected when the transgene was under the control of citrus promoters as compared to the expression under the control of the CaMV35S promoter. The association of the uidA gene with the citrus-derived promoters resulted in mRNA levels of up to 60–41.8% of the value obtained with the construct containing CaMV35S driving the uidA gene. Moreover, a lower inter-individual variability in transgene expression was observed amongst the different transgenic lines, where gene constructs containing citrus-derived promoters were used. In silico analysis of the citrus-derived promoter sequences revealed that their activity may be controlled by several putative cis-regulatory elements. These citrus promoters will expand the availability of regulatory sequences for driving gene expression in citrus gene-modification programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anami S, Njuguna E, Coussens G, Aesaert S, Van Lijsebettens M (2013) Higher plant transformation: Principles and molecular tools. Int J Dev Biol 57:483–494

    Article  PubMed  CAS  Google Scholar 

  • Andersen GR, Nissen P, Nyborg J (2003) Elongation factors in protein biosynthesis. Trends Biochem Sci 28:434–441

    Article  PubMed  CAS  Google Scholar 

  • Azevedo FA, Mourão Filho FAA, Mendes BMJ, Almeida WAB, Schinor EH, Pio R, Barbosa JM, Guidetti-Gonzalez S, Carrer H, Lam E (2006a) Genetic transformation of Rangpur lime (Citrus limonia Osbeck) with the bO (bacterio-opsin) gene and its initial evaluation for Phytophthora nicotianae resistance. Plant Mol Biol Rep 24:185–196

    Article  CAS  Google Scholar 

  • Azevedo FA, Mourão Filho FAA, Schinor EH, Paoli LG, Mendes BMJ, Harakava R, Gabriel DW, Lee RF (2006b) GUS gene expression driven by a citrus promoter in transgenic tobacco and ‘Valencia’ sweet orange. Pesqui Agropecu Bras 41:1623–1628

    Article  Google Scholar 

  • Banerjee J, Sahoo DK, Raha S, Sarkar S, Dey N, Maiti IB (2015) A region containing an as-1 element of Dahlia mosaic virus (DaMV) subgenomic transcript promoter plays a key role in green tissue and root-specific expression in plants. Plant Mol Biol Rep 33:532–556

    Article  CAS  Google Scholar 

  • Bang SW, Park SH, Kim YS, Choi YD, Kim JK (2015) The activities of four constitutively expressed promoters in single-copy transgenic rice plants for two homozygous generations. Planta 241:1529–1541

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Mendes JM, Mourão Filho FAA, Bergamin Filho A, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hortic 122:109–115

    Article  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Benyon LS, Stover E, Bowman KD, Niedz R, Shatters RG Jr, Zale J, Belknap W (2013) GUS expression driven by constitutive and phloem-specific promoters in citrus hybrid US-802. Vitr Cell Dev Biol Plant 49:255–265

    Article  CAS  Google Scholar 

  • Beringer J, Chen W, Garton R, Sardesai N, Wang PH, Zhou N, Gupta M, Wu H (2017) Comparison of the impact of viral and plant-derived promoters regulating selectable marker gene on maize transformation and transgene expression. Plant Cell Rep 36:519–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilas R, Szafran K, Hnatuszko-konka K (2016) Cis-regulatory elements used to control gene expression in plants. Plant Cell Tiss Org Cult 127:269–287

    Article  CAS  Google Scholar 

  • Boscariol RL, Monteiro M, Takahashi EK, Chabregas SM, Vieira MLC, Vieira LGE, Pereira LFP, Mourão Filho FAA, Cardoso SC, Christiano RSC, Bergamin Filho A, Barbosa JM, Azevedo FA, Mendes BMJ (2006) Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis ‘Hamlin’. J Am Soc Hortic Sci 131:530–536

    CAS  Google Scholar 

  • Brasileiro MCA, Carneiro CTV (1998) Manual de transformação genética de plantas. Embrapa, Brasília

    Google Scholar 

  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592

    Article  PubMed  CAS  Google Scholar 

  • Cardoso SC, Barbosa-Mendes JM, Boscariol-Camargo RL, Christiano RSC, Bergamin Filho A, Vieira MLC, Mendes BMJ, Mourão Filho FAA (2010) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Mol Biol Rep 28:185–192

    Article  CAS  Google Scholar 

  • Carvalho RF, Folta KM (2017) Assessment of promoters and a selectable marker for development of strawberry intragenic vectors. Plant Cell Tiss Org Cult 128:259–271

    Article  CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Peña L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30

    Article  CAS  Google Scholar 

  • Chakravarthi M, Syamaladevi DP, Harunipriya P, Augustine SM, Subramonian N (2016) A novel PR10 promoter from Erianthus arundinaceus directs high constitutive transgene expression and is enhanced upon wounding in heterologous plant systems. Mol Biol Rep 43:17–30

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Wang J, Ye MX, Li H, Ji LX, Li Y, Cui DQ, Liu JM, An XM (2013) A novel moderate constitutive promoter derived from poplar (Populus tomentosa Carrière). Int J Mol Sci 14:6187–6204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Correa MF, Pinto APC, Rezende JAM, Harakava R, Mendes BMJ (2015) Genetic transformation of sweet passion fruit (Passiflora alata) and reactions of the transgenic plants to Cowpea aphid borne mosaic virus. Eur J Plant Pathol 143:813–821

    Article  CAS  Google Scholar 

  • De Bolle MFC, Butaye KMJ, Coucke WJW, Goderis IJWM., Wouters PFJ, van Boxel N, Broekaert WF, Cammue BPA (2003) Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci 165:169–179

    Article  CAS  Google Scholar 

  • Domínguez A, Guerri J, Cambra M, Navarro L, Moreno P, Peña L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 19:427–433

    Article  Google Scholar 

  • Domínguez A, Cervera M, Pérez RM, Romero J, Fagoaga C, Cubero J, López MM, Juárez J, Navarro L, Peña L (2004) Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breeding 14:171–183

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dutt M, Ananthakrishnan G, Jaromin MK, Brlansky RH, Grosser JW (2012) Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. Tree Physiol 32:83–93

    Article  PubMed  CAS  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening). PLoS One 10:e0137134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espinoza C, Schlechter R, Herrera D, Torres E, Serrano A, Medina C, Arce-Johnson P (2013) Cisgenesis and intragenesis: new tools for improving crops. Biol Res 46:323–331

    Article  PubMed  CAS  Google Scholar 

  • Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: An analysis of the cyclophilin family of proteins. Arch Biochem Biophys 371:149–162

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21:1163–1181

    Article  PubMed  CAS  Google Scholar 

  • Gittins JR, Pellny TK, Hiles ER, Rosa C, Biricolti S, James DJ (2000) Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill.). Planta 210:232–240

    Article  PubMed  CAS  Google Scholar 

  • Han YJ, Kim YM, Hwang OJ, Kim J-II (2015) Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. Plant Cell Rep 34:265–275

    Article  PubMed  CAS  Google Scholar 

  • He C, Lin Z, McElroy D, Wu R (2009) Identification of a rice Actin2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol J 7:227–239

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28:837–849

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Garcia CM, Bouchard RA, Rushton PJ, Jones ML, Chen X, Timko MP, Finer JJ (2010) High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biol 10:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T (2012) Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. J Plant Res 125:643–651

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis L. Osbeck.) protoplasts by direct DNA transfer. Jpn J Genet 64:91–97

    Article  Google Scholar 

  • Lam E, Benfey PN, Chua NH (1990) Characterization of as-1: a factor binding site on the 35S promoter of Cauliflower Mosaic Virus. In Lamb C, Beachy R (eds) Plant gene transfer. UCLA Symposium on Molecular Cell Biology, New Series. Wiley-Liss, Inc., New York, pp 71–79

    Google Scholar 

  • Lassen J, Madsen KH, Sandøe P (2002) Ethics and genetic engineering—lessons to be learned from GM foods. Bioproc Biosyst Eng 24:263–271

    Article  CAS  Google Scholar 

  • Li ZT, Kim KH, Jasinski JR, Creech MR, Gray DJ (2012) Large-scale characterization of promoters from grapevine (Vitis spp.) using quantitative anthocyanin and GUS assay systems. Plant Sci 196:132–142

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Liu X, Li J, Li S, Chen G, Zhou X, Yang W, Chen R (2015) Isolation of a maize ZmCI-1B promoter and characterization of its activity in transgenic maize and tobacco. Plant Cell Rep 34:1443–1457

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Zhang Y, Zheng X, Zhu K, Xu Q, Deng X (2016) Isolation and functional characterization of a lycopene-cyclase gene promoter from citrus. Front Plant Sci 7:1367

    PubMed  PubMed Central  Google Scholar 

  • Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One 7:e31263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malnoy M, Venisse J, Reynoird J, Chevreau E (2003) Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta 216:802–814

    PubMed  CAS  Google Scholar 

  • Malnoy M, Reynoird J, Borejsza-Wysocka EE, Aldwinckle HS (2006) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica). Transgenic Res 15:83–93

    Article  PubMed  CAS  Google Scholar 

  • Mendes BMJ, Cardoso SC, Boscariol-Camargo RL, Cruz RB, Mourão Filho FAA, Bergamin Filho A (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol 59:68–75

    Article  CAS  Google Scholar 

  • Merrick WC (1992) Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 56:291–315

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Phys 47:23–48

    Article  CAS  Google Scholar 

  • Miyata LY, Harakava R, Stipp LCL, Mendes BM, Appezzato-da-Glória B, Mourão Filho FAA (2012) GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters. Plant Cell Rep 31:2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Leite Júnior RP, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  • Muniz FR, De Souza AJ, Stipp LCL, Schinor E, Freitas W Jr, Harakava R, Stach-Machado DR, Rezende JAM, Mourão Filho FAA, Mendes BMJ (2012) Genetic transformation of Citrus sinensis with Citrus tristeza virus (CTV) derived sequences and reaction of transgenic lines to CTV infection. Biol Plant 56:162–166

    Article  CAS  Google Scholar 

  • Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factor requirement of citrus tissue culture. In: International Citrus Symposium. University of California, Riverside, pp 1155–1169

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:47–48

    Article  Google Scholar 

  • Paoli LG, Boscariol-Camargo RL, Harakava R, Mendes BMJ, Mourão Filho FAA (2007) Transformação genética de laranja ‘Valencia’ com o gene cecropin MB39. Pesqui Agropecu Bras 42:1663–1666

    Article  Google Scholar 

  • Park SH, Yi N, Kim YS, Jeong MH, Bang SW, Choi YD, Kim JK (2010) Analysis of five novel putative constitutive gene promoters in transgenic rice plants. J Exp Bot 61:2459–2467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philip A, Syamaladevi DP, Chakravarthi M, Gopinath K, Subramonian N (2013) 5′ Regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots. Plant Cell Rep 32:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Porto MS, Pinheiro MPN, Batista VGL, dos Santos RC, Filho Pde A, de Lima LM (2014) Plant promoters: An approach of structure and function. Mol Biotechnol 56:38–49

    Article  PubMed  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev-Pl 40:1–22

    Article  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rius SP, Casati P, Iglesias AA, Gomez-Casati DF (2008) Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148:1655–1667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romano PGN, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiol 134:1268–1282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaart JG, Van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:438–449

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Rajam MV (2009) Citrus biotechnology: achievements, limitations and future directions. Physiol Mol Biol Plants 15:3–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorkina A, Bardosh G, Liu YZ, Fridman I, Schlizerman L, Zur N, Or E, Goldschmidt EE, Blumwald E, Sadka A (2011) Isolation of a citrus promoter specific for reproductive organs and its functional analysis in isolated juice sacs and tomato. Plant Cell Rep 30:1627–1640

    Article  PubMed  CAS  Google Scholar 

  • Suhandono S, Apriyanto A, Ihsani N (2014) Isolation and characterization of three cassava elongation factor 1 alpha (MeEF1A) promoters. PLoS One 9:32–34

    Article  CAS  Google Scholar 

  • Tavano ECR, Vieira MLC, Mourão Filho FAA, Harakava R, Mendes BMJ (2015) Genetic transformation of Citrus Sinensis “Hamlin” with Attacin a driven by a phloem tissue-specific promoter for resistance to Candidatus Liberibacter spp. Acta Hortic 1065:695–702

    Article  Google Scholar 

  • Teakle GR, Manfield IW, Graham JF, Gilmartin PM (2002) Arabidopsis thaliana GATA factors: organization, expression and DNA-binding characteristics. Plant Mol Biol 50:43–57

    Article  PubMed  CAS  Google Scholar 

  • Verdaguer B, De Kochko A, Fux CI, Beachy RN, Fauquet C (1998) Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol 37:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Zhang C, Harrison M, Wang ZY (2005) Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol Breed 15:221–231

    Article  CAS  Google Scholar 

  • Yang L, Hu C, Li N, Zhang J, Yan J, Deng Z (2011) Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol Biol 75:11–23

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, McHale LK, Finer JJ (2015) Isolation and characterization of “GmScream” promoters that regulate highly expressing soybean (Glycine max Merr.) genes. Plant Sci 241:189–198

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Yang Y, Wang X, Yu F, Yu C, Chen J, Cheng Y, Yan C (2013) Enhanced transgene expression in rice following selection controlled by weak promoters. BMC Biotechnol 13:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou X, Song E, Peng A, He Y, Xu L, Lei T, Yao L, Chen S (2014) Activation of three pathogen inducible promoters in transgenic citrus (Citrus sinensis Osbeck) after Xanthomonas axonopodis pv. citri infection and wounding. Plant Cell Tiss Org Cult 117:85–98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LE and ECRT acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for research financial support and fellowships. BMJM, FAAMF, and LE acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. A. Mourão Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Kathryn K. Kamo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erpen, L., Tavano, E.C.R., Harakava, R. et al. Isolation, characterization, and evaluation of three Citrus sinensis-derived constitutive gene promoters. Plant Cell Rep 37, 1113–1125 (2018). https://doi.org/10.1007/s00299-018-2298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2298-1

Keywords

Navigation