Skip to main content
Log in

A Region Containing an as-1 Element of Dahlia Mosaic Virus (DaMV) Subgenomic Transcript Promoter Plays a Key Role in Green Tissue- and Root-Specific Expression in Plants

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A subgenomic transcript (Sgt) promoter was isolated from the genomic clone of dahlia mosaic virus (DaMV), which is a double-stranded DNA virus of the Caulimoviridae family. The DaMVSgt promoter, which is linked to the heterologous β-glucuronidase (GUS) reporter gene, was characterized in transient protoplasts and in transgenic tobacco, as well as in Arabidopsis plants. The 5′- and 3′-deletion analysis of a 591-bp DaMVSgt promoter fragment indicated that a 441-bp promoter fragment (−372 to +69 from the transcription start site; TSS) was sufficient for maximal promoter activity. A 141-bp promoter fragment (−72 to +69 from TSS) was the minimal promoter region that also showed relatively strong activity. The three activation sequence-1 (as-1) elements and the border regions were primarily responsible for the promoter activity, as revealed by a finer internal deletion and mutation analysis of the cis-elements and of the immediate border sequence of the activation domain. Electrophoretic mobility shift assay (EMSA), supershift EMSA, DNase I footprinting, Southwestern blotting, and UV cross-linking studies demonstrated the binding of a tobacco transcription factor, TGA1a, that correlated with 2,4-dichlorophenylacetic acid (2,4D)-induced transcriptional activity of the DaMVSgt promoter. Histological GUS staining and the GUS enzymatic assay demonstrated that the 441-bp DaMVSgt4 promoter and 141-bp minimal DaMVSgt4F are 5.5 and 4.6 times, respectively, stronger than the CaMV 35S promoter. The minimal DaMVSgt4F promoter is more active than CaMV 35S in all types of green tissues and roots, without any detectable expression in reproductive tissues and seeds. The DaMVSgt4F promoter may be useful for transgene containment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An G, Costa MA, Mitra A, Ha SB, Marton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88:547–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee J, Magnani R, Nair M, Dirk LM, DeBolt S, Maiti IB, Houtz RL (2013a) Calmodulin-mediated signal transduction pathways in Arabidopsis are fine-tuned by methylation. Plant Cell 25:4493–4511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee J, Sahoo DK, Dey N, Houtz RL, Maiti IB (2013b) An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and tobacco plants. PLoS One 8:e79622

    Article  PubMed Central  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Combinatorial and synergistic properties of CaMV 35S-enhancer subdomains. EMBO J 9:1685–1696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90:47–62

    Article  PubMed  Google Scholar 

  • Bhattacharyya S, Pattanaik S, Maiti IB (2003) Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PClSV) promoter-leader and the antisense orientation of PClSV ORF VII (p7R). Planta 218:115–124

    Article  CAS  PubMed  Google Scholar 

  • Bogunov IB (2006) Identification of Dahlia mosaic virus with molecular-biological methods. Mol Biol 40:184–185

    Article  Google Scholar 

  • Bouchez D, Tokuhisa JG, Llewellyn DJ, Dennis ES, Ellis JG (1989) The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J 8:4197–4204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, Tonelli C (2011) DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biol 11:1471–2229

    Article  Google Scholar 

  • de Dios Barajas-Lopez J, Serrato AJ, Olmedilla A, Chueca A, Sahrawy M (2007) Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs. Plant Physiol 145:946–960

    Article  PubMed Central  PubMed  Google Scholar 

  • Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782

    Article  CAS  PubMed  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  • Escobar C, Aristizéabal F, Navas A, Del Campo FF, Fenoll C (2001) Isolation of active DNA-binding nuclear proteins from tomato galls induced by root-knot nematodes. Plant Mol Biol Report 19:375–376. doi:10.1007/BF02772837

    Article  Google Scholar 

  • Fehlberg V, Vieweg MF, Dohmann EM, Hohnjec N, Puhler A, Perlick AM, Kuster H (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot 56:799–806

    Article  CAS  PubMed  Google Scholar 

  • Garreton V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol 130:1516–1526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Libbenga KI, Hall M, Hooykaas PJJ (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Leiden, pp 423–459

  • Hasegawa A, Verver J, Shimada A, Saito M, Goldbach R, Van Kammen A, Miki K, Kameya-Iwaki M, Hibi T (1989) The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter. Nucleic Acids Res 17:9993–10013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133:1605–1616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong MJ, Shih MC (2003) Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem Biophys Res Commun 300:555–562

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Glover G, Arias J (2001) Regulation of DNA binding and trans-activation by a xenobiotic stress-activated plant transcription factor. J Biol Chem 276:172–178

    Article  CAS  PubMed  Google Scholar 

  • Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340:727–730

    Article  CAS  PubMed  Google Scholar 

  • Katagiri F, Yamazaki K, Horikoshi M, Roeder RG, Chua NH (1990) A plant DNA-binding protein increases the number of active preinitiation complexes in a human in vitro transcription system. Genes Dev 4:1899–1909

    Article  CAS  PubMed  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kroumova AB, Sahoo DK, Raha S, Goodin M, Maiti IB, Wagner GJ (2013) Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. Plant Cell Rep 32:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 6:9

    Article  Google Scholar 

  • Kumar D, Patro S, Ghosh J, Das A, Maiti IB, Dey N (2012) Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root- and leaf-activity using TGACG motif rearrangement. Gene 503:36–47

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1:1147–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci 86:7890–7894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li HY, Wei W, Li Y (2006) Roles of salicylic acid-responsive cis-acting elements and W-boxes in salicylic acid induction of VCH3 promoter in transgenic tobaccos. Acta Biochim Biophys Sin 38:46–52

    Article  CAS  PubMed  Google Scholar 

  • Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244:440–444

    Article  CAS  PubMed  Google Scholar 

  • Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6:143–156

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg R, Thurow C, Kegler C, Gatz C (2000) Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 275:19897–19905

    Article  CAS  PubMed  Google Scholar 

  • Nole-Wilson S, Krizek BA (2000) DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res 28:4076–4082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Odell JT, Keith Dudley R, Howell SH (1981) Structure of the 19 S RNA transcript encoded by the cauliflower mosaic virus genome. Virology 111:377–385

    Article  CAS  PubMed  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Pascuzzi P, Hamilton D, Bodily K, Arias J (1998) Auxin-induced stress potentiates trans-activation by a conserved plant basic/leucine-zipper factor. J Biol Chem 273:26631–26637

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik S, Dey N, Bhattacharyya S, Maiti IB (2004) Isolation of full-length transcript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Sci 167:427–438

    Article  CAS  Google Scholar 

  • Richins RD, Shepherd RJ (1983) Physical maps of the genomes of dahlia mosaic virus and mirabilis mosaic virus—two members of the caulimovirus group. Virology 124:208–214

    Article  CAS  PubMed  Google Scholar 

  • Sahoo DK, Dey N, Maiti IB (2014a) pSiM24 Is a Novel Versatile Gene Expression Vector for Transient Assays As Well As Stable Expression of Foreign Genes in Plants. PLoS ONE 9(6):e98988. doi:10.1371/journal.pone.0098988

  • Sahoo DK, Maiti IB (2014) Biomass derived from transgenic tobacco expressing the Arabidopsis CESA3 ixr1-2 gene exhibits improved saccharification. Acta Biol Hung 65(2):189–204, In Press

    Article  CAS  PubMed  Google Scholar 

  • Sahoo DK, Ranjan R, Kumar D, Kumar A, Sahoo BS, Raha S, Maiti IB, Dey N (2009) An alternative method of promoter assessment by confocal laser scanning microscopy. J Virol Methods 161:114–121

    Article  CAS  PubMed  Google Scholar 

  • Sahoo DK, Sarkar S, Raha S, Das NC, Banerjee J, Dey N, Maiti IB (2014b) Analysis of Dahlia Mosaic Virus full-length transcript promoter-driven gene expression in transgenic plants. Plant Mol Biol Rep. doi:10.1007/s11105-014-0738-9

  • Sahoo DK, Sarkar S, Raha S, Maiti IB, Dey N (2014c) Comparative analysis of synthetic DNA promoters for high-level gene expression in plants. Planta (in press)

  • Sahoo DK, Stork J, DeBolt S, Maiti IB (2013) Manipulating cellulose biosynthesis by expression of mutant Arabidopsis proM24::CESA3(ixr1-2) gene in transgenic tobacco. Plant Biotechnol J 11:362–372

    Article  CAS  PubMed  Google Scholar 

  • Sahoo DK, Raha S, Hall JT, Maiti IB (2014) Over-expression of the synthetic chimeric native-T-phylloplanin-GFP genes optimized for monocot and dicot plants renders enhanced resistance to blue mold disease in tobacco (N. tabacum L.). Sci World J. doi:10.1155/2014/601314, Article ID 601314, 12 pages

    Google Scholar 

  • Sanger M, Daubert S, Goodman RM (1990) Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol 14:433–443

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1–11

    Article  CAS  PubMed  Google Scholar 

  • Siu FK, Lee LT, Chow BK (2008) Southwestern blotting in investigating transcriptional regulation. Nat Protoc 3:51–58

    Article  CAS  PubMed  Google Scholar 

  • Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle T (1994) The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol Biol 26:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Mol Biol 31:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Andreas MP (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant Microbe Interact 17:62–69

    Article  CAS  PubMed  Google Scholar 

  • Vijaybhaskar V, Subbiah V, Kaur J, Vijayakumari P, Siddiqi I (2008) Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter. J Biosci 33:185–193

    Article  CAS  PubMed  Google Scholar 

  • Welsch R, Wüst F, Bär C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wild M, Daviere JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf SS, Roder K, Schweizer M (1995) Determination of the molecular weight of DNA-binding proteins using UV-crosslinking and SDS-PAGE. Mol Biotechnol 4:269–273

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Chen QF, Chye ML (2009) Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis. Plant Signal Behav 4:1063–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamazaki K, Katagiri F, Imaseki H, Chua NH (1990) Tga1a, a tobacco DNA-binding protein, increases the rate of initiation in a plant in vitro transcription system. Proc Natl Acad Sci U S A 87:7035–7039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45:386–391

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10:75–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye R, Zhou F, Lin Y (2012) Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L ssp.). Plant Cell Rep 31:1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao JP, Jiang XL, Zhang BY, Su XH (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7:18

    Google Scholar 

Download references

Acknowledgments

We are very much indebted to Kentucky Tobacco Research and Development Center (KTRDC) for facilities and support. This work was partially supported by the KY state KTRDC grant to IBM. ND and SS are greatly indebted to the Institute of Life Sciences (ILS) for funds and facilities. The authors would like to thank Ms. Bonnie Kinney and Mr. J.T. Hall for taking care of the transgenic plants. We are thankful to Mr. Sashi Bhusana Sahoo, ILS, for his technical assistance in carrying out the DNase1 footprinting experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipak Kumar Sahoo, Nrisingha Dey or Indu B. Maiti.

Additional information

Joydeep Banerjee and Dipak Kumar Sahoo contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, J., Sahoo, D.K., Raha, S. et al. A Region Containing an as-1 Element of Dahlia Mosaic Virus (DaMV) Subgenomic Transcript Promoter Plays a Key Role in Green Tissue- and Root-Specific Expression in Plants. Plant Mol Biol Rep 33, 532–556 (2015). https://doi.org/10.1007/s11105-014-0766-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0766-5

Keywords

Navigation