Skip to main content
Log in

Identification of different cytoplasms based on newly developed mitotype-specific markers for marker-assisted selection breeding in Brassica napus L.

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Different mitotype-specific markers were developed to distinguish different cytoplasms in Brassica napus L.

Abstract

Mitotype-specific markers have been developed to distinguish different mitotypes in plant. And use of molecular markers to identify different mitotypes in Brassica napus would enhance breeding efficiency. Here, we comparatively analyzed six sequenced mitochondrial genomes in Brassica napus and identified collinear block sequences and mitotype-specific sequences (MSSs) of these mitochondrial genomes. The collinear block sequences between mitochondrial genomes of nap, cam, and pol cytoplasmic male sterility (CMS) lines were higher than those of other lines. After comparative analysis of the six sequenced mitochondrial genomes (cam, nap, ole, pol CMS, ogu CMS, and hau CMS), 90 MSSs with sizes ranging from 101 to 9981 bp and a total length of 103,756 bp (accounting for 6.77% of the mitochondrial genome sequences) were identified. Additionally, 12 mitotype-specific markers were developed based on the mitochondrial genome-specific sequences in order to distinguish among these different mitotypes. Cytoplasms of 570 different inbred lines collected across scientific research institutes in China were identified using the MSS markers developed in our study. In addition to confirming the accuracy of the cytoplasmic identification, we also identified mitotypes that have not been reported in Brassica napus. Our study may provide guidance for the classification of different mitotypes in B. napus breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bhat SR, Vijayan P, Ashutosh, Dwivedi KK, Prakash S (2006) Diplotaxis erucoides—induced cytoplasmic male sterility in Brassica juncea is rescued by the Moricandia arvensis restorer: genetic and molecular analyses. Plant Breed 125:150–155

    Article  CAS  Google Scholar 

  • Chalhoub B (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome (vol 348, 1260782, 2014). Science 345:1255–1255

    Article  CAS  Google Scholar 

  • Chang S, Yang T, Du T, Huang Y, Chen J, Yan J, He J, Guan R (2011) Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genom 12:497

    Article  CAS  Google Scholar 

  • Chen BY, Heneen WK, Jönsson R (2010) Independent inheritance of erucic acid content and flower colour in the C-genome of Brassica napus L. Plant Breed 100:147–149

    Article  Google Scholar 

  • Chen J, Guan R, Chang S, Xing H (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PloS One 6:e17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PloS One 5:e11147

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fujii S, Kazama T, Yamada M, Toriyama K (2010) Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genom 11:209

    Article  Google Scholar 

  • Grewe F, Edger PP, Keren I, Sultan L, Pires JC, Ostersetzer-Biran O, Mower JP (2014) Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea. Mitochondrion 19:135–143

    Article  CAS  PubMed  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handa H (2007) Investigation of the origin and transmission of linear mitochondrial plasmid based on phylogenetic analysis in Japanese rapeseed varieties. Genome (National Research Council Canada) 50:234

    CAS  Google Scholar 

  • Heng S, Wei C, Jing B, Wan Z, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2014) Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288. BMC Genom 15:322

    Article  Google Scholar 

  • Heng S, Shi D, Hu Z, Huang T, Li J, Liu L, Xia C, Yuan Z, Xu Y, Fu T (2015) Characterization and classification of one new cytoplasmic male sterility (CMS) line based on morphological, cytological and molecular markers in non-heading Chinese cabbage (Brassica rapa L.). Plant Cell Rep 34:1529–1537

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Yun-Chang LI, Mei DS, Fang XP, Hansen LN, Andersen SB (2003) Establishment and Identification of cytoplasmic male sterility in Brassica napus by intergeneric somatic hybridization. J Integr Agric 2:1321–1328

    Google Scholar 

  • Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L, Li S, Zhu R, Zhu Y (2014) Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 19:282–288

    Article  CAS  PubMed  Google Scholar 

  • Ji JJ, Huang W, Yin YX, Li Z, Gong ZH (2014) Development of a SCAR marker for early identification of S-cytoplasm based on mitochondrial SRAP analysis in pepper (Capsicum annuum L.). Mol Breed 33:679–690

    Article  CAS  Google Scholar 

  • Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M (2007) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    Article  Google Scholar 

  • Kim S, Lim H, Park S, Cho KH, Sung SK, Oh DG, Kim KT (2007) Identification of a novel mitochondrial genome type and development of molecular markers for cytoplasm classification in radish (Raphanus sativus L.). Theor Appl Genet 115:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li XQ, Hameed A, Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Lilly JW, Havey MJ (2001) Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics 159:317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Cui P, Zhan K, Lin Q, Zhuo G, Guo X, Ding F, Yang W, Liu D, Hu S, Yu J, Zhang A (2011) Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genom 12:163

    Article  CAS  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploidgenomes. Nat Commun 5:3930–3930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livaja M, Palmieri MC, Von RU, Durner J (2008) The effect of the bacterial effector protein harpin on transcriptional profile and mitochondrial proteins of Arabidopsis thaliana. J Proteom 71:148–159

    Article  CAS  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Ogura H (1968) Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towerds the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genom 191:244–250

    Article  CAS  Google Scholar 

  • Rawat DS, Anand IJ (1979) Male sterility in Indian mustard. Indian J Genet Plant Breed 39:412–414

    Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genom 272:603–615

    Article  CAS  Google Scholar 

  • Tanaka K (1998) Agricultural research in a centrally planned economy: the case of rapeseed Research in the People’s Republic of China (PRC). Asian J Soc Sci 26:69–92

    Article  Google Scholar 

  • Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics 13:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NL, Tan YF, Jacoby RP, Millar AH (2009) Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteom 72:367–378

    Article  CAS  Google Scholar 

  • Thompson KF (1972) Cytoplasmic male-sterility in oil-seed rape. Heredity 29:253–257

    Article  Google Scholar 

  • Touzet P, Meyer EH (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19:166–171

    Article  CAS  PubMed  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Z, Jing B, Tu J, Ma C, Shen J, Yi B, Wen J, Huang T, Wang X, Fu T (2008) Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. Theor Appl Genet 116:355–362

    Article  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jiang J, Li X, Li A, Zhang Y, Guan R, Wang Y (2012) Complete sequence of heterogenous-composition mitochondrial genome (Brassica napus) and its exogenous source. BMC Genomics 13:675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei WL, Wang HZ, Liu GH (2005) Molecular Identification of the Sterile Cytoplasm of NCa of a Cytoplasmic Male Sterile Line in Rapeseed (Brassica napus L.). Sci Agric Sin 38:1965–1972

    CAS  Google Scholar 

  • Xie H, Wang J, Qian M, Li N, Zhu Y, Li S (2014) Mitotype-specific sequences related to cytoplasmic male sterility in Oryza species. Mol Breed 33:803–811

    Article  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Feng C, Liu B, Hu Z, Sheng C, Pental D, Ju Y (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    Article  CAS  PubMed  Google Scholar 

  • Zhao HX, Li ZJ, Hu SW, Sun GL, Chang JJ, Zhang ZH (2010) Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay. Theor Appl Genet 121:643–650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Professor Rongzhan Guan for his kindly provide the seeds and mtDNAs of Suzhongqing (B. rapa) and B. oleracea. This research was financially supported by the National Natural Science Foundation of China (NSFC Grant Number 31271761), the National Key Research and Development Program of China (Grant Number 2016YFD0101300), the Program for Modern Agricultural Industrial Technology System (nycytx-00501) and Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiong Shen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interests.

Additional information

Communicated by Kinya Toriyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2017_2121_MOESM1_ESM.xls

Table S1 The distribution of different MSS (> 100 bp) in different mitochondrial genomes used in this study. MSS1 to MSS90 were the sequences corresponding to the distribution of MSSs in Fig. 2. The detailed places of these MSSs from different mitochondrial genomes were showed in it. The number “0” represent no homology sequences existed. (XLS 24 KB)

Table S2 Detailed mitotype information of 570 B. napus inbred lines used in this study. (XLS 77 KB)

Table S3 The PCR primers used in this study. (XLS 334 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, S., Chen, F., Wei, C. et al. Identification of different cytoplasms based on newly developed mitotype-specific markers for marker-assisted selection breeding in Brassica napus L.. Plant Cell Rep 36, 901–909 (2017). https://doi.org/10.1007/s00299-017-2121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2121-4

Keywords

Navigation