Skip to main content
Log in

Poly(aniline-co-o-nitroaniline): transport properties using electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Highly uniform ac conductivity and dielectric permittivity of poly(aniline-co–o-nitroaniline) (PA-co-o-NA)s have been recorded by using electrochemical impedance spectroscopy in the frequency range of 10–2–107 Hz. Also, the unusual electrical behavior of PA-co-o-NA80 at low frequencies has been noticed. X-ray diffraction and differential thermal analysis techniques are used to study the crystallinity of the copolymer. The thermal stability of the copolymer is studied by thermogravimetric analysis which confirms the higher stability of copolymers than PAni. Atomic force microscopy measurement highlights the higher smoothness of the copolymer’s surface as compared to PAni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shirakawa H, Edwin JL, Macdiarmid A, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. JCS Chem Comm. https://doi.org/10.1039/c39770000578

    Article  Google Scholar 

  2. Waware US, Hamouda AMS, Rashid M, Kasak P (2018) Towards the higher solubility and thermal stability of poly(aniline-co-m-bromoaniline). Ionics 24 (12):3837-3844

    Article  CAS  Google Scholar 

  3. Lee K, Cho S, Park SH, Heeger AJ, Lee C-W, Lee S-H (2006) Charge transport and the electrodynamic response of a conducting polymer. Nature 44:4

    Google Scholar 

  4. Bai S, Zhao Y, Sun J, Tian Ye, Luo R, Li D, Aifan, (2015) Ultrasensitive room temperature NH3 sensor based on a graphene–polyaniline hybrid loaded on PET thin film. Chen ChemCommun 51:7524

    CAS  Google Scholar 

  5. Krishna D, Arun B, Biswajit S (2016) Tuning of electrical and optical properties of polyaniline incorporated functional paper for flexible circuits through oxidative chemical polymerization. RSC Adv 6:94795–94802

    Article  Google Scholar 

  6. Feng X et al (2019) Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nature Comm. https://doi.org/10.1038/s41467-019-11921-3

    Article  Google Scholar 

  7. Waware U S, A.M.S.  Hamouda, Majumdar D (2020) Synthesis, characterization and physicochemical studies of copolymers of aniline and 3-nitroaniline. Polym Bull 77:4469–4488

    Article  Google Scholar 

  8. Waware U.S, Mohd Rashid, A.M.S.Hamouda, Rohana Adnan (2020) Highly crystalline and thermally stable poly (aniline-co-2-nitroaniline). Polym Bull. https://doi.org/10.1007/s00289-020-03153-z

    Article  Google Scholar 

  9. Koval’Chuk E.P et al. (2001) Copolymers of aniline and nitro aniline: Part II Physicochemical properties. Mater Chem Phys 70:38–48

    Google Scholar 

  10. Savitha P, Sathyanarayana DN (2004) Synthesis and characterization of soluble conducting poly (o-/m-toluidine-co-o-nitroaniline). Synth Metals. https://doi.org/10.1016/j.synthmet.2004.04.024

    Article  Google Scholar 

  11. Yahya A. Ismail, Afaq Ahmad, Faiz Mohammad, (2008) Synthesis, Electrical, Electronic and Charge Transport Properties of Poly(aniline‐co‐ ‐toluidine) . J Macromol Sci Part A 45 (8):650-657

    Article  CAS  Google Scholar 

  12. Joseph N, Varghese J, Sebastian MT (2015) Self-assembled polyaniline nanofibers with enhanced electromagnetic shielding properties. RSC Adv 5:20459–20466

    Article  CAS  Google Scholar 

  13. Wang L, Wu T, Du S, Pei M, Guo W, Wei S (2016) High performance supercapacitors based on ternary graphene/Au/polyaniline (PANI) hierarchical nanocomposites. RSC Adv 6:1004–1011

    Article  CAS  Google Scholar 

  14. Maity N, Kuila A, Das S, Mandal D, Shit A, Nandi AK (2015) Optoelectronic and photovoltaic properties of graphene quantum dot–polyaniline nanostructures. J Mater Chem A 3:20736–20748

    Article  CAS  Google Scholar 

  15. Li M, An C, Marszalek T, Baumgarten M, Mullen K, Pisula W (2016) Adv Mater 28:2245–2252

    Article  CAS  Google Scholar 

  16. Waware U.S, ,Hamouda A.M.S,  Mohd Rashid , Peter  Kasak (2018) Binding energy, structural, and dielectric properties of a thin film of poly(aniline-co-m-fluoroaniline). Ionics 24:3249–3257

    Article  CAS  Google Scholar 

  17. Okutan M, Yavuz E, AhlatcıoğluÖzerol E et al (2020) Impedance spectroscopy of polyaniline coated hydrogel. Polym Bull. https://doi.org/10.1007/s00289-020-03295-0

    Article  Google Scholar 

  18. Warare US, Rashid M, Hamouda AMS (2019) Synthesis and characterization of electrically conductive poly (aniline-co-3-bromoaniline) nanocomposites. Ionics 25:2669–2676

    Article  Google Scholar 

  19. Kwon AH, Conklin JA, Makhinson M, Kaner RB (1997) Chemical synthesis and characterization of fluoro-substituted polyanilines. Synth Met 84:95

    Article  CAS  Google Scholar 

  20. Umesh S, Waware, Mohd Rashid, Summers G.J (2016) An overview of physical properties of poly (Aniline-Co-2-Fluoroaniline). JMEST, 3(1)

  21. Zho WS, Cromak K, MacDiarmid AG (1991) Effect of sulfonic acid group on polyaniline backbone. J Am Chem Soc 113:2665

    Article  Google Scholar 

  22. Wei Yen, Hariharan Ramakrishnan, Patel Sandeep A (1990) Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules 23:758–764

    Article  CAS  Google Scholar 

  23. Conklin Jeanine A, Huang Shu-Chuan (1995) Thermal properties of polyaniline and poly (aniline-co-o-ethylaniline). Macromolecules 28:6522–6527

    Article  CAS  Google Scholar 

  24. Wunderlich B (1990) Determination of polymer crystallinity by DSC. Therm Anal Acad Press 2:417–431

    Google Scholar 

  25. Blain RL (2002) TN 48 Polymer heats of fusion TA instruments. New Castle, DE

    Google Scholar 

  26. Waware US, Rashid M, Hamouda AMS (2019) Poly(aniline-co-3-aminophenol): enhanced crystallinity and solubility. Appl Phys A 125 (12)

  27. Peter A, Julio de P The Physical Chemistry, 10th Ed, Oxford university press, pp 663

  28. Cihaner A, Onal AM (2001) Synthesis and characterization of fluorine-substituted polyanilinesEur. Poly J 37:1767

    CAS  Google Scholar 

  29. Maity N, Kuila A, Das S, Mandal D, Shit A, Nand AK (2015) Optoelectronic and photovoltaic properties of graphene quantum dot–polyaniline nanostructures. J Mater Chem A 3:20736

    Article  CAS  Google Scholar 

  30. Chakraborty P, Bairi P, Mondal S, Nandi AK (2014) Co-assembled conductive Hydrogel of N-Fluorenylmethoxycarbonyl Phenylalanine with Polyaniline. J PhysChem B 118:13969

    CAS  Google Scholar 

Download references

Acknowledgments

The Qatar university, Doha, and the Universiti Sains Malaysia, are gratefully acknowledged for the post-doctoral position and research facilities. One of the  author acknowledges Universiti Sains Malaysia (USM), Penang Malaysia, 11800, for the financial support through short-term grant no. 304.PKIMIA.6315473.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umesh S. Waware or Mohd Rashid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waware, U.S., Rashid, M., Summers, G.J. et al. Poly(aniline-co-o-nitroaniline): transport properties using electrochemical impedance spectroscopy. Polym. Bull. 78, 6983–6998 (2021). https://doi.org/10.1007/s00289-020-03445-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03445-4

Keywords

Navigation