Skip to main content
Log in

Impedance spectroscopy of polyaniline coated hydrogel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A sulfonic acid functional hydrogel was prepared starting from the copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid as monomer and tetraallyl ammonium bromide as a cross-linking agent in the presence of K2S2O8 as a radical initiator. Aniline was interacted with the hydrogel, and oxidative polymerization reaction of anilinium sulfonate salt containing hydrogel was performed by using ammonium persulfate to obtain conducting gel material. The electrical/dielectric properties of the PANI-coated hydrogel were analyzed using impedance spectroscopy. The frequency dependence of the real (ε′) and imaginary (ε″) parts of the dielectric constant (ε), dissipation factor, the real (σ′) and imaginary (σ″) parts of the ionic conductivity (σ), Cole–Cole plots and impedance parameters values for the PANI-coated hydrogel were analyzed in the frequency range of 100 Hz–15 MHz at room temperature. PANI-coated hydrogel shows the non-Debye relaxation type in the materials. The conductivity mechanisms of PANI-coated hydrogel are super linear power law and extended pair approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dispenza C, Lo Presti C, Belfiore C, Spadaro G, Piazza S (2006) Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly (N-vinyl-2-pyrrolidone). Polymer 47:961–971. https://doi.org/10.1016/j.polymer.2005.12.071

    Article  CAS  Google Scholar 

  2. Blanchet GB, Fincher CR, Lefenfeld M, Roger JA (2004) Contact resistance in organic thin film transistors. App Phys Lett 84:296–298. https://doi.org/10.1063/1.1639937

    Article  CAS  Google Scholar 

  3. Tittu M, Hiekkataipale P, Kainen JH, Makela T, Ikkala O (2002) Viscoelastic and electrical transitions in gelation of electrically conducting polyaniline. Macromolecules 35:5212–5217. https://doi.org/10.1021/ma011943z

    Article  CAS  Google Scholar 

  4. Akbayir C, Bulut F, Farrell T, Goldschmidt A, Günther R, Kam AP, Miclea P, Scherf U, Seekamp J, Solovyev VG, Sotomayor Torres CM (2003) Nanostructured conjugated polymeric system for photovoltatic applications. Rev Adv Mater Sci 5:205–210

    CAS  Google Scholar 

  5. Tiitu M, Talo A, Forsén O, Ikkala O (2005) Aminic epoxy resin hardeners as reactive solvents for conjugated polymers: polyaniline base/epoxy composites for anticorrosion coatings. Polymer 46:6855–6861. https://doi.org/10.1016/j.polymer.2005.05.119

    Article  CAS  Google Scholar 

  6. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715. https://doi.org/10.1016/j.biomaterials.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  7. Kim DH, Abidian M, Martin DC (2004) Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. Biomed Mat Res Part A 71:577–585. https://doi.org/10.1002/jbm.a.30124

    Article  CAS  Google Scholar 

  8. Qiang Y, Antony J, Sharma A, Nutting J, Meyer D (2005) Iron/iron oxide core shell nano clusters for biomedical application. Nanopart Res 8:489–496. https://doi.org/10.1007/s11051-005-9011-3

    Article  CAS  Google Scholar 

  9. Steyskal J, Gilberg KG (2002) Polyaniline, preparation of a conducting polymer (IUPAC Technical Report). Pure Appl Chem 74:857–867. https://doi.org/10.1351/pac200274050857

    Article  Google Scholar 

  10. Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbonhydrate Polym 74:215–219. https://doi.org/10.1016/j.carbpol.2008.02.008

    Article  CAS  Google Scholar 

  11. Syed AA, Dinesan MK (1991) Polyaniline—a novel polymeric material-review. Talanta 38(8):815–837. https://doi.org/10.1016/0039-9140(91)80261-W

    Article  CAS  PubMed  Google Scholar 

  12. Kulkarni SB, Joshi SS, Lokhande CD (2011) Facile and efficient route for preparation of nanostructured polyaniline thin films: Schematic model for simplest oxidative chemical polymerization. Chem Eng J 166:1179–1185. https://doi.org/10.1016/j.cej.2010.12.032

    Article  CAS  Google Scholar 

  13. Pascoal AM, Mitidieri S, Fernandes KF (2011) Immobilisation of alpha-amylase from Aspergillus niger onto polyaniline. Food Bioprod Process 89:300–306. https://doi.org/10.1016/j.fbp.2010.07.002

    Article  CAS  Google Scholar 

  14. Owino JHO, Arotiba OA, Baker PGL, Guiseppi-Elie A, Iwuoha EI (2008) Synthesis and characterization of poly (2-hydroxyethyl methacrylate)-polyaniline based hydrogel composites. React Funct Polym 68:1239–1244. https://doi.org/10.1016/j.reactfunctpolym.2008.05.005

    Article  CAS  Google Scholar 

  15. Kuo CW, Wen TC (2008) Dispersible polyaniline nanoparticles in aqueous poly (styrenesulfonic acid) via the interfacial polymerization route. Eur Polym J 44:3393–3401. https://doi.org/10.1016/j.eurpolymj.2008.07.018

    Article  CAS  Google Scholar 

  16. Jin X, Xiao CF, Wang WY (2010) Electrical and mechanical properties of novel polyaniline coated polycaprolactam fibers. Synth Met 160(5-6):368–372. https://doi.org/10.1016/j.synthmet.2009.11.006

    Article  CAS  Google Scholar 

  17. Gupta B, Prakash R (2009) Synthesis of processible doped polyaniline-polyacrylic acid composites. J Appl Polym Sci 114(2):874–882. https://doi.org/10.1002/app.30554

    Article  CAS  Google Scholar 

  18. Mojtabavi EA, Nasirian S (2019) Flexible self-powered ultraviolet-visible photodetector based on polyaniline-titanium dioxide heterostructures: the study of the rearrangement of layers. App Surf Sci 492:189–198. https://doi.org/10.1016/j.apsusc.2019.06.218

    Article  CAS  Google Scholar 

  19. Bayramoglu G, Metin AU, Altintas B, Arica MY (2010) Reversible immobilization of glucose oxidase on polyaniline grafted polyacrylonitrile conductive composite membrane. Bioresour Technol 101(18):6881–6887. https://doi.org/10.1016/j.biortech.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  20. Senkal BF, Erkal D, Yavuz E (2006) Removal of dyes from water by poly (vinyl pyrrolidone) hydrogel. Polym Adv Technol 17:924–927. https://doi.org/10.1002/pat.836

    Article  CAS  Google Scholar 

  21. Yan B, Chen Z, Cai L, Chen Z, Fu J, Xu Q (2015) Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl Surf Sci 356:39–47. https://doi.org/10.1016/j.apsusc.2015.08.024

    Article  CAS  Google Scholar 

  22. Xiao Y, Yan XH, Cao JX, Ding JW, Mao YL, Xiang J (2004) Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys ReV B 69:205415. https://doi.org/10.1103/PhysRevB.69.205415

    Article  CAS  Google Scholar 

  23. Meller A (1983) Gmelin handbuch der anorganische chemie boron compounds. Springer, Berlin

    Google Scholar 

  24. Pouch JJ, Alterovitz SA (1990) Synthesis and properties of boron nitride. Brookfield, Trans Techn

    Google Scholar 

  25. Jonscher AK (1978) The universal dielectric response: a review of data their new interpretation. Chelsea Dielectrics Group, London

    Google Scholar 

  26. Özerol EA, Bozdoğan AC, Şenkal BF, Okutan M (2016) The effect on the impedance characteristics of the metal oxides (Al2O3 and ZnO) doping into polyaniline. Mater Sci Semicond Process 56:357–361

    Article  Google Scholar 

  27. Özerol EA (2019) Electro-optical properties of poly (N-vinyl carbazole) nanoclay composites. Polym Bull 76(10):5301–5311

    Article  Google Scholar 

  28. Meller A (1983) Gmelin handbuch der anorganische chemie, boron compounds Springer, Berlin, 2nd Supplement, 1

  29. Öztürk M, Coşkun R, Okutan M, Yalçın O (2018) Origin of the synthetic circuits and the Brownian motion in stretchable crystal violet doped and biocompatible composite hydrogels. J Mol Liq 249:211–218. https://doi.org/10.1016/j.molliq.2017.11.008

    Article  CAS  Google Scholar 

  30. Okutan M, Coşkun R, Öztürk M, Yalçın O (2015) Dielectric properties of Rhodamine-B and metal doped hydrogels. Phys B 457:5–11

    Article  CAS  Google Scholar 

  31. Jacob R, Nair HG, Isac J (2015) "Impedance spectroscopy and dielectric studies of nanocrystalline iron doped barium strontium titanate ceramics". Process Appl Ceram 9(2):73–79. https://doi.org/10.2298/PAC1502073J

    Article  Google Scholar 

  32. Thakur S, Rai R, Bdikin I, Valente MA (2016) Impedance and modulus spectroscopy characterization of Tb modified Bi0. 8A0. 1Pb0. 1Fe0. 9Ti0. 1O3 ceramics. Materials Research 19(1):1–8. https://doi.org/10.1590/1980-5373-MR-2015-0504

    Article  CAS  Google Scholar 

  33. Coşkun R, Okutan M, Öztürk M, Yalçın O (2019) Origin of the synthetic circuits and comparison effects of different dose malachite green oxalate doped hydrogel. Mater Chem Phys 222:361–368. https://doi.org/10.1016/j.matchemphys.2018.10.012

    Article  CAS  Google Scholar 

  34. Coşkun R, Okutan M, Öztürk M, Yalçın O (2019) Experimental model to describe the dielectric response of different dye and nanoparticles doped hydrogels for biological cell membranes and biological systems. J Mol Liq 296:112072. https://doi.org/10.1016/j.molliq.2019.112072

    Article  CAS  Google Scholar 

  35. Mitsumata T, Gong JP, Ikeda K, Osada Y (1998) Low-frequency dielectric relaxation of polyelectrolyte gels. J Phys Chem B 102:5246–5251

    Article  CAS  Google Scholar 

  36. Radoń A, Łukowiec D, Kremzer M, Mikuła J, Włodarczyk P (2018) Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 11(5):735–757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Okutan, Erdem Yavuz or Esma Ahlatcıoğlu Özerol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okutan, M., Yavuz, E., Ahlatcıoğlu Özerol, E. et al. Impedance spectroscopy of polyaniline coated hydrogel. Polym. Bull. 78, 4473–4486 (2021). https://doi.org/10.1007/s00289-020-03295-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03295-0

Keywords

Navigation