Skip to main content
Log in

A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Nowadays, the local heat accumulation of electronic components not only restricts the further miniaturization and integration of electronic devices but also seriously affects the performance and lifetime of the devices. Polymeric materials are potential candidates for effective thermal management, and improving the lower intrinsic thermal conductivity (TC) of polymer is essential to solving the efficient discharge of the accumulated heat. Meanwhile, it is important to ensure good electrical insulation for the material’s applications on specific occasions. This work systematically reviews the recent development in the preparation strategies and practical applications of thermally conductive and electrically insulating polymeric materials. The authors also summarize the thermal and electrical performance evolution of each sample prepared by a specific strategy, which provides guidelines for designing novel polymer-based thermal management materials. The application section covers the employment of materials in the field of heat dissipation of electronic devices, including microelectronics and battery packs. Finally, the challenges and prospects of thermally conductive and electrically insulating polymeric materials are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

This paper is a review article, and the authors have provided the citation permission certificate of the corresponding references when submitting the manuscript.

References

  1. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Xu BB, Murugadoss V, Nithesh N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy Composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  2. Zhang S, Tian Y, Gu X, Tang W, Sun J (2018) Improving the flame resistance and thermal conductivity of ethylene-vinyl acetate composites by incorporating hexachlorocyclotriphosphazene-modified graphite and carbon nanotubes. Polym Compos 39(S2):E891–E901. https://doi.org/10.1002/pc.24304

    Article  CAS  Google Scholar 

  3. Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27(4):8–16

    Article  Google Scholar 

  4. Kasza K, Malinowski Ł, Królikowski I (2013) Optimization of pin fin heat sink by application of CFD simulations and doe methodology with neural network approximation. Appl Mech Eng 18(2):365–381. https://doi.org/10.2478/ijame-2013-0022

    Article  Google Scholar 

  5. Cao J, Wu Y, Ling Z, Fang X, Zhang Z (2021) Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials. Appl Therm En 199:117562. https://doi.org/10.1016/j.applthermaleng.2021.117562

    Article  Google Scholar 

  6. Yao W, Huang Z, Li J, Wu L, Xiang C (2018) Enhanced electrical insulation and heat transfer performance of vegetable oil based nanofluids. J Nanomater 2018:1–12. https://doi.org/10.1155/2018/4504208

    Article  CAS  Google Scholar 

  7. Feng CP, Yang LY, Yang J, Bai L, Bao RY, Liu ZY, Yang MB, Lan HB, Yang W (2020) Recent advances in polymer-based thermal interface materials for thermal management: a mini-review. Compos Commun 22:100528. https://doi.org/10.1016/j.coco.2020.100528

    Article  Google Scholar 

  8. Baer E, Lei Z (2017) 50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50(6):2239–2256. https://doi.org/10.1021/acs.macromol.6b02669

    Article  CAS  Google Scholar 

  9. Tan DQ (2020) The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J Appl Polym Sci 137(33):49379. https://doi.org/10.1002/app.49379

    Article  CAS  Google Scholar 

  10. Guo Y, Zhou Y, Xu Y (2021) Engineering polymers with metal-like thermal conductivity-present status and future perspectives. Polymer 233:124168. https://doi.org/10.1016/j.polymer.2021.124168

    Article  CAS  Google Scholar 

  11. Fang Y, Chen G, Bick M, Chen J (2021) Smart textiles for personalized thermoregulation. Chem Soc Rev 50:9357–9374. https://doi.org/10.1039/d1cs00003a

    Article  CAS  Google Scholar 

  12. Rybak A, Malinowski L, Adamus-Wlodarczyk A, Ulanski P (2021) Thermally conductive shape memory polymer composites filled with boron nitride for heat management in electrical insulation. Polymers 13(13):2191. https://doi.org/10.3390/polym13132191

    Article  CAS  Google Scholar 

  13. Chen X, Su Y, Reay D, Riffat S (2016) Recent research developments in polymer heat exchangers-a review. Renewable Sustainable Energy Rev 60:1367–1386. https://doi.org/10.1016/j.rser.2016.03.024

    Article  CAS  Google Scholar 

  14. Ruan K, Zhong X, Shi X, Dang J, Gu J (2021) Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater Today Phys 20:100456. https://doi.org/10.1016/j.mtphys.2021.100456

    Article  CAS  Google Scholar 

  15. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett 13:110. https://doi.org/10.1007/s40820-021-00640-4

    Article  CAS  Google Scholar 

  16. Zhang L, Deng H, Fu Q (2018) Recent progress on thermal conductive and electrical insulating polymer composites. Compos Commun 8:74–82. https://doi.org/10.1016/j.coco.2017.11.004

    Article  Google Scholar 

  17. Li S, Yu S, Feng Y (2016) Progress in and prospects for electrical insulating materials. High Voltage 1(3):122–129. https://doi.org/10.1049/hve.2016.0034

    Article  Google Scholar 

  18. Niu H, Ren Y, Guo H, Małycha K, Orzechowski K, Bai SL (2020) Recent progress on thermally conductive and electrical insulating rubber composites: Design processing and applications. Compos Commun 22:100430. https://doi.org/10.1016/j.coco.2020.100430

    Article  Google Scholar 

  19. Ouyang Y, Bai L, Tian H, Li X, Yuan F (2022) Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Composites: Part A 152:106685. https://doi.org/10.1016/j.compositesa.2021.106685

  20. Liu H, Wang Y, Qin Z, Liu D, Xu H, Dong H, Hu W (2021) Electrically conductive coordination polymers for electronic and optoelectronic device applications. J Phys Chem Lett 12(6):1612–1630. https://doi.org/10.1021/acs.jpclett.0c02988

    Article  CAS  Google Scholar 

  21. Mohd Radzuan NA, Sulong AB, Sahari J (2017) A review of electrical conductivity models for conductive polymer composite. Int J Hydrogen Energy 42(14):9262–9273. https://doi.org/10.1016/j.ijhydene.2016.03.045

    Article  CAS  Google Scholar 

  22. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J (2018) A review on thermally conductive polymeric composites: classification measurement model and equations mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230. https://doi.org/10.1007/s42114-018-0031-8

    Article  Google Scholar 

  23. Zhang H, Zhang X, Fang Z, Huang Y, Xu H, Liu Y, Wu D, Zhuang J, Sun J (2020) Recent advances in preparation, mechanisms, and applications of thermally conductive polymer composites: a review. J Compos Sci 4(4):180. https://doi.org/10.3390/jcs4040180

    Article  CAS  Google Scholar 

  24. Hutchinson JM, Moradi S (2020) Thermal conductivity and cure kinetics of epoxy-boron nitride composites—a review. Materials 13(16):3634. https://doi.org/10.3390/ma13163634

    Article  CAS  Google Scholar 

  25. Salunke DR, Gopalan V (2021) Thermal and electrical behaviors of boron nitride/epoxy reinforced polymer matrix composite- a review. Polym Compos 42(4):1659–1669. https://doi.org/10.1002/pc.25952

    Article  CAS  Google Scholar 

  26. Xiao M, Du BX (2016) Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt 1(1):34–42. https://doi.org/10.1049/hve.2016.0008

    Article  Google Scholar 

  27. Ahmed F, Lalia BS, Kochkodan V, Hilal N, Hashaikeh R (2016) Electrically conductive polymeric membranes for fouling prevention and detection: a review. Desalination 391:1–15. https://doi.org/10.1016/j.desal.2016.01.030

    Article  CAS  Google Scholar 

  28. Lei Q (1999) Recent progress of engineering dielectrics. Science Press, 1st edn, Beijing

  29. Shen S, Henry A, Tong J, Zheng R, Chen G (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5(4):251–255. https://doi.org/10.1038/nnano.2010.27

    Article  CAS  Google Scholar 

  30. Kikugawa G, Desai TG, Keblinski P, Ohara T (2013) Effect of crosslink formation on heat conduction in amorphous polymers. J Appl Phys 114(3):034302. https://doi.org/10.1063/1.4813505

    Article  CAS  Google Scholar 

  31. Zhang T, Wu X, Luo T (2014) Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J Phys Chem C 118(36):21148–21159. https://doi.org/10.1021/jp5051639

    Article  CAS  Google Scholar 

  32. Yu W, Xie H, Yin L, Zhao J, Xia L, Chen L (2015) Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int J Therm Sci 91:76–82. https://doi.org/10.1016/j.ijthermalsci.2015.01.006

    Article  CAS  Google Scholar 

  33. Chen C, Wang H, Xue Y, Xue Z, Liu H, Xie X, Mai YW (2016) Structure rheological thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites. Compos Sci Technol 128:207–214. https://doi.org/10.1016/j.compscitech.2016.04.005

    Article  CAS  Google Scholar 

  34. Yao Y, Sun J, Zeng X, Sun R, Xu JB, Wong CP (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13):1704044. https://doi.org/10.1002/smll.201704044

    Article  CAS  Google Scholar 

  35. Dai S, Zhang T, Mo S, Cai Y, Yuan W, Ma T, Hu L, Wang B (2019) Study on preparation thermal conductivity and electrical insulation properties of epoxy/AlN. IEEE Trans Appl Supercond 29(2):1–6. https://doi.org/10.1109/tasc.2018.2890752

    Article  CAS  Google Scholar 

  36. Zhu Z, Li C, Songfeng E, Xie L, Geng R, Lin C-T, Li L, Yao Y (2019) Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos Sci Technol 170:93–100. https://doi.org/10.1016/j.compscitech.2018.11.035

    Article  CAS  Google Scholar 

  37. Liu J, Guo Y, Weng C, Zhang H, Zhang Z (2020) High thermal conductive epoxy based composites fabricated by multi-material direct ink writing. Compos A 129:105648. https://doi.org/10.1016/j.compositesa.2019.105684

    Article  CAS  Google Scholar 

  38. Kochetov R, Andritsch T, Lafont U, Morshuis P, Picken SJ, Smit JJ (2009) Preparation and dielectric properties of epoxy-BN and epoxy-AlN nanocomposites. In Proc. IEEE Electrical Insulation Conf pp. 397–400. https://doi.org/10.1109/EIC.2009.5166378

  39. Wang XB, Weng Q, Wang X, Li X, Zhang J, Liu F (2014) Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. ACS Nano 8(9):9081–9088. https://doi.org/10.1021/nn502486x

    Article  CAS  Google Scholar 

  40. Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17(4):163–174. https://doi.org/10.1016/j.mattod.2014.04.003

    Article  CAS  Google Scholar 

  41. Feng X, Sina N, Gilberto C, Khan MH (2015) Edge-hydroxylated boron nitride nanosheets as an effective additive to improve the thermal response of hydrogels. Adv Mater 27(44):7196–7203. https://doi.org/10.1002/adma.201502803

    Article  CAS  Google Scholar 

  42. Li Q, Chen L, Matthew RG, Zhang S, Zhang G, Li HU, Iagodkine E, Haque A, Chen L, Jackson TN, Wang Q (2015) Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523:576–579. https://doi.org/10.1038/nature17673

    Article  CAS  Google Scholar 

  43. Mimura K, Nakamura Y, Masaki M, Nishimura T (2015) Development of resin insulated material with high thermal conductivity and application to the power module. J Photopolym Sci Technol 28(2):169–173. https://doi.org/10.2494/photopolymer.28.169

    Article  CAS  Google Scholar 

  44. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites : mechanisms parameters and theory. Prog Polym Sci 61:1–28. https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  CAS  Google Scholar 

  45. Cho EC, Huang JH, Li CP, Chang J, Cai W, Lee KC (2016) Graphene-based thermoplastic composites and their application for LED thermal management. Carbon 102:66–73. https://doi.org/10.1016/j.carbon.2016.01.097

    Article  CAS  Google Scholar 

  46. Zhao B, Jiang L, Zeng X, Zhang K, Yuen M, Xu J, Fu X, Sun R, Wong CP (2016) A highly thermal conductive electrode for lithium ion batteries. J Mater Chem A 4(38):14595–14604. https://doi.org/10.1039/c6ta04774b

    Article  CAS  Google Scholar 

  47. Zeng X, Sun J, Yao Y, Sun R, Wong CP (2017) A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5):5167–5178. https://doi.org/10.1021/acsnano.7b02359

    Article  CAS  Google Scholar 

  48. Heeger AJ (2001) Nobel Lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73(3):681. https://doi.org/10.1103/RevModPhys.73.681

    Article  CAS  Google Scholar 

  49. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  Google Scholar 

  50. Henry A (2014) Thermal transport in polymers. Annu Rev Heat Transfer 17(N/A):485–520. https://doi.org/10.1615/AnnualRevHeatTransfer.2013006949

  51. Shea JJ (2007) Introduction to physical polymer science, 4th edition [Book review]. IEEE Electrical Insulation Magazine, New York

    Book  Google Scholar 

  52. Hansen D, Kantayya RC, Ho CC (1966) Thermal conductivity of high polymers - the influence of molecular weight. Polym Eng Sci 6(3):260–262. https://doi.org/10.1002/pen.760060315

    Article  CAS  Google Scholar 

  53. Lin S, Cai Z, Wang Y, Zhao L, Zhai C (2019) Tailored morphology and highly enhanced phonon transport in polymer fibers: a multiscale computational framework. npj Comput Mater 5:126. https://doi.org/10.1038/s41524-019-0264-2

  54. Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Adv Mater 30(17):1705544. https://doi.org/10.1002/adma.201705544

    Article  CAS  Google Scholar 

  55. Ding Y, Hou H, Zhao Y, Zhu ZT, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103. https://doi.org/10.1016/j.progpolymsci.2016.06.006

    Article  CAS  Google Scholar 

  56. Zhu B, Liu J, Wang T, Han M, Valloppilly S, Xu S, Wang X (2017) Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega 2(7):3931–3944. https://doi.org/10.1021/acsomega.7b00563

    Article  CAS  Google Scholar 

  57. Lu C, Chiang SW, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F (2017) Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115:52–59. https://doi.org/10.1016/j.polymer.2017.02.024

    Article  CAS  Google Scholar 

  58. Huang YF, Wang ZG, Yu WC, Ren Y, Lei J, Xu JZ, Li ZM (2019) Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material. Polymer 180:121760. https://doi.org/10.1016/j.polymer.2019.121760

    Article  CAS  Google Scholar 

  59. Ronca S, Igarashi T, Forte G, Rastogi S (2017) Metallic-like thermal conductivity in a lightweight insulator: solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 123:203–210. https://doi.org/10.1016/j.polymer.2017.07.027

    Article  CAS  Google Scholar 

  60. Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, Wang J, Li M, Ghasemi H, Huang X (2019) Nanostructured polymer films with metal-like thermal conductivity. Nat Commun 10:1771. https://doi.org/10.1038/s41467-019-09697-7

    Article  CAS  Google Scholar 

  61. Choy CL, Wong YW, Yang GW, Kanamoto T (1999) Elastic modulus and thermal conductivity of ultradrawn polyethylene. J Polym Sci Part B: Polym Phys 37:3359–3367. https://doi.org/10.1002/(SICI)1099-0488(19991201)37:233.0.CO;2-S

    Article  CAS  Google Scholar 

  62. Robbins AB, Drakopoulos SX, Martin FI, Ronca S, Minnich AJ (2019) Ballistic thermal phonons traversing nanocrystalline domains in oriented polyethylene. Proc Natl Acad Sci 116(35):17163–17168. https://doi.org/10.1073/pnas.1905492116

    Article  CAS  Google Scholar 

  63. Choy CL, Luk WH, Chen FC (1978) Thermal conductivity of highly oriented polyethylene. Polymer 19(2):155–162. https://doi.org/10.1016/0032-3861(78)90032-0

    Article  CAS  Google Scholar 

  64. Choy CL, Chen FC, Luk WH (1980) Thermal conductivity of oriented crystalline polymers. J Polym Sci Polym Phys Ed 18:1187–1207. https://doi.org/10.1002/pol.1980.180180603

    Article  CAS  Google Scholar 

  65. Choy CL, Fei Y, Xi TG (1993) Thermal conductivity of gel-spun polyethylene fibers. J Polym Sci Part A Polym Chem 31(3):365–370. https://doi.org/10.1002/polb.1993.090310315

    Article  CAS  Google Scholar 

  66. Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, de Boer MP, Shen S (2018) Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat Commun 9(1):1–9. https://doi.org/10.1038/s41467-018-03978-3

    Article  CAS  Google Scholar 

  67. Uetani K, Okada T, Oyama HT (2017) In-plane anisotropic thermally conductive nanopapers by drawing bacterial cellulose hydrogels. ACS Macro Lett 6(4):345–349. https://doi.org/10.1021/acsmacrolett.7b00087

    Article  CAS  Google Scholar 

  68. Shi A, Li Y, Liu W, Lei J, Li ZM (2019) High thermal conductivity of chain-aligned bulk linear ultra-high molecular weight polyethylene. J Appl Phys 125(24):245110. https://doi.org/10.1063/1.5108520

    Article  CAS  Google Scholar 

  69. Dong L, Xu X, Li B (2018) High thermal conductivity and superior thermal stability of amorphous PMDA/ODA nanofiber. Appl Phys Lett 112(22):221904. https://doi.org/10.1063/1.5031216

    Article  CAS  Google Scholar 

  70. Singh V, Bougher TL, Weathers A, Ca IY, Bi K, Pettes MT, Mcmenamin SA, Lv W, Resler DP, Gattuso TR (2014) High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol 9(5):384–390. https://doi.org/10.1038/nnano.2014.44

    Article  CAS  Google Scholar 

  71. Xu Y, Wang X, Zhou J, Bai S, Gang C (2018) Molecular engineered conjugated polymer with high thermal conductivity. Sci Adv 4(3):eaar3031. https://doi.org/10.1126/sciadv.aar3031

  72. Guo Z, Lee D, Liu Y, Sun F, Luo T (2014) Tuning the thermal conductivity of solar cell polymers through side chain engineering. Phys Chem Chem Phys 16(17):7764–7771. https://doi.org/10.1039/c4cp00393d

    Article  CAS  Google Scholar 

  73. Ma H, Tian Z (2019) Chain rotation significantly reduces thermal conductivity of single-chain polymers. J Mater Res 34(1):126–133. https://doi.org/10.1557/jmr.2018.362

    Article  CAS  Google Scholar 

  74. Xiao T, Fan X, Fan D, Li Q (2017) High thermal conductivity and low absorptivity/ emissivity properties of transparent fluorinated polyimide films. Polym Bull 74(11):4561–4575. https://doi.org/10.1007/s00289-017-1974-6

    Article  CAS  Google Scholar 

  75. Nam KH, Choi HK, Yeo H, You NH, Ku BC, Yu J (2018) Molecular design and property prediction of sterically confined polyimides for thermally stable and transparent materials. Polymers 10(6):630. https://doi.org/10.3390/polym10060630

    Article  CAS  Google Scholar 

  76. Xiong X, Yang M, Liu C, Li X, Tang D (2017) Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation. J Appl Phys 122(3):035104. https://doi.org/10.1063/1.4994797

    Article  CAS  Google Scholar 

  77. Mehra N, Kashfipour MA, Zhu J (2018) Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers. Appl Mater Today 13:207–216. https://doi.org/10.1016/j.apmt.2018.09.007

    Article  Google Scholar 

  78. Li Y, Li C, Zhang L, Zhou W (2019) Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane. J Mater Sci: Mater Electron 30(9):8329–8338. https://doi.org/10.1007/s10854-019-01150-1

    Article  CAS  Google Scholar 

  79. Li Y, Gong C, Li C, Ruan K, Liu C, Liu H, Gu J (2021) Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films. J Mater Sci Technol 82:250–256. https://doi.org/10.1016/j.jmst.2021.01.017

    Article  CAS  Google Scholar 

  80. Ruan K, Guo Y, Gu J (2021) Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54(10):4934–4944. https://doi.org/10.1021/acs.macromol.1c00686

    Article  CAS  Google Scholar 

  81. Morishita T, Takahashi N (2017) Highly thermally conductive and electrically insulating polymer nanocomposites with boron nitride nanosheet/ionic liquid complexes. RSC Adv 7(28):36450–36459. https://doi.org/10.1039/c7ra06691k

    Article  CAS  Google Scholar 

  82. Chen C, Tang Y, Ye YS, Xue Z, Xue Y, Xie X, Mai YW (2014) High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Compos Sci Technol 105:80–85. https://doi.org/10.1016/j.compscitech.2014.10.002

    Article  CAS  Google Scholar 

  83. Chen J, Huang X, Sun B, Jiang P (2019) Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1):337–345. https://doi.org/10.1021/acsnano.8b06290

    Article  CAS  Google Scholar 

  84. Wang X, Wu P (2019) Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl Mater Interfaces 11(24):21946–21954. https://doi.org/10.1021/acsami.9b07377

    Article  CAS  Google Scholar 

  85. Han Y, Shi X, Yang X, Guo Y, Zhang J, Kong J, Gu J (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944. https://doi.org/10.1016/j.compscitech.2019.107944

    Article  CAS  Google Scholar 

  86. Hu X, Huang M, Kong N, Han F, Tan R, Huang Q (2021) Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by SiC ceramic coating for efficient thermal interface materials. Compos B 227:109398. https://doi.org/10.1016/j.compositesb.2021.109398

    Article  CAS  Google Scholar 

  87. Li Y, Lin H, Mehra N (2021) Identification of thermal barrier areas in graphene oxide/boron nitride membranes by scanning thermal microscopy: thermal conductivity improvement through membrane assembling. ACS Appl Nano Mater 4(4):4189–4198. https://doi.org/10.1021/acsanm.1c00528

    Article  CAS  Google Scholar 

  88. Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y (2015) Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Compos B 79:444–450. https://doi.org/10.1016/j.compositesb.2015.05.011

    Article  CAS  Google Scholar 

  89. Dai W, Yu J, Liu Z, Wang Y, Song Y, Lyu J, Bai H, Nishimura K, Jiang N (2015) Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Compos A 76:73–81. https://doi.org/10.1016/j.compositesa.2015.05.017

    Article  CAS  Google Scholar 

  90. Yang S, Wang Q, Wen B (2021) Highly thermally conductive and superior electrical insulation polymer composites via in situ thermal expansion of expanded graphite and in situ oxidation of aluminum nanoflakes. ACS Appl Mater Interfaces 13(1):1511–1523. https://doi.org/10.1021/acsami.0c18603

    Article  CAS  Google Scholar 

  91. Yuan FY, Zhang HB, Li X, Li XZ, Yu ZZ (2013) Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos A 53:137–144. https://doi.org/10.1016/j.compositesa.2013.05.012

    Article  CAS  Google Scholar 

  92. Li Y, Mehra N, Ji T, Yang X, Mu L, Gu J, Zhu J (2018) The stiffness–thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale 10(4):1695–1703. https://doi.org/10.1039/c7nr06780a

    Article  CAS  Google Scholar 

  93. Han Y, Ruan K, Gu J (2022) Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res 15(5):4747–4755. https://doi.org/10.1007/s12274-022-4159-z

    Article  CAS  Google Scholar 

  94. Guo Y, Qiu H, Ruan K, Wang S, Zhang Y, Gu J (2022) Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos Sci Technol 219:109253. https://doi.org/10.1016/j.compscitech.2021.109253

    Article  CAS  Google Scholar 

  95. Shi X, Zhang R, Ruan K, Ma T, Guo Y, Gu J (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J Mater Sci Nanotechnol 82:239–249. https://doi.org/10.1016/j.jmst.2021.01.018

    Article  CAS  Google Scholar 

  96. Guo Y, Ruan K, Shi X, Yang X, Gu J (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134. https://doi.org/10.1016/j.compscitech.2020.108134

    Article  CAS  Google Scholar 

  97. Wang X, Wu P (2017) Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene-microsphere and boron nitride nanosheet. ACS Appl Mater Interfaces 9(23):19934–19944. https://doi.org/10.1021/acsami.7b04768

    Article  CAS  Google Scholar 

  98. Cho HB, Nakayama T, Suematsu H, Suzuki T, Jiang W, Niihara K, Song E, Eom NSA, Kim S, Choa YH (2016) Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets. Compos Sci Technol 129:205–213. https://doi.org/10.1016/j.compscitech.2016.04.033

    Article  CAS  Google Scholar 

  99. Yao Y, Zhu X, Zeng X, Sun R, Xu JB, Wong CP (2018) Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl Mater Interfaces 10(11):9669–9678. https://doi.org/10.1021/acsami.8b00328

    Article  CAS  Google Scholar 

  100. Huang T, Li Y, Chen M, Wu L (2020) Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae. Compos Sci Technol 198:108322. https://doi.org/10.1016/j.compscitech.2020.108322

    Article  CAS  Google Scholar 

  101. An L, Gu R, Zhong B, Wang J, Zhang J, Yu Y (2021) Quasi-isotropically thermal conductive highly transparent insulating and super-flexible polymer films achieved by cross linked 2D hexagonal boron nitride nanosheets. Small 17(46):2101409. https://doi.org/10.1002/smll.202101409

    Article  CAS  Google Scholar 

  102. Yan Q, Dai W, Gao J, Tan X, Lv L, Ying J, Lu X, Lu J, Yao Y, Wei Q, Sun R, Yu J, Jiang N, Chen D, Wong CP, Xiang R, Maruyama S, Lin CT (2021) Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4):6489–6498. https://doi.org/10.1021/acsnano.0c09229

    Article  CAS  Google Scholar 

  103. Zhou S, Xu T, Jin L, Song N, Ding P (2022) Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Compos Sci Technol 219:109259. https://doi.org/10.1016/j.compscitech.2022.109259

    Article  CAS  Google Scholar 

  104. Yu X, Xue M, Yin Z, Luo Y, Hong Z, Xie C, Yang Y, Ren Z (2022) Flexible boron nitride composite membranes with high thermal conductivity low dielectric constant and facile mass production. Compos Sci Technol 222:109400. https://doi.org/10.1016/j.compscitech.2022.109400

    Article  CAS  Google Scholar 

  105. Song N, Hou X, Chen L, Cui S, Shi L, Ding P (2017) A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b02675

  106. Fang H, Zhao Y, Zhang Y, Ren Y, Bai SL (2017) Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl Mater Interfaces 9(31):26447–26459. https://doi.org/10.1021/acsami.7b07650

    Article  CAS  Google Scholar 

  107. Zhang Y, Li Y, Lei Q, Fang X, Xie H, Yu W (2022) Tightly-packed fluorinated graphene aerogel/polydimethylsiloxane composite with excellent thermal management properties. Compos Sci Technol 220:109302. https://doi.org/10.1016/j.compscitech.2022.109302

    Article  CAS  Google Scholar 

  108. Tang L, He M, Na X, Guan X, Gu J (2019) Functionalized glass fibers cloth/spherical bn fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun 16:5–10. https://doi.org/10.1016/j.coco.2019.08.007

    Article  Google Scholar 

  109. Lee W, Kim J (2021) Highly thermal conductive and electrical insulating epoxy composites with a three-dimensional filler network by sintering silver nanowires on aluminum nitride surface. Polymers (Basel) 13(5):694. https://doi.org/10.3390/polym13050694

    Article  CAS  Google Scholar 

  110. Yıldız G, Akkoyun M (2021) Thermal and electrical properties of aluminum nitride/boron nitride filled polyamide 6 hybrid polymer composites. J Appl Polym Sci 138(22):50516. https://doi.org/10.1002/app.50516

    Article  CAS  Google Scholar 

  111. Morishita T, Matsushita M (2021) Ultra-highly electrically insulating carbon materials and their use for thermally conductive and electrically insulating polymer composites. Carbon 184:786–798. https://doi.org/10.1016/j.carbon.2021.08.058

    Article  CAS  Google Scholar 

  112. Wang X, Wu P (2018) Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem Eng J 348:723–731. https://doi.org/10.1016/j.cej.2018.04.196

    Article  CAS  Google Scholar 

  113. Lee S, Kim J (2020) Thermally conductive 3D binetwork structured aggregated boron nitride/cu-foam/polymer composites. Synth Met 270:116587. https://doi.org/10.1016/j.synthmet.2020.116587

    Article  CAS  Google Scholar 

  114. Wang Y, Wu W, Drummer D, Liu C, Shen W, Tomiak F, Schneider K, Liu X, Chen Q (2020) Highly thermally conductive polybenzoxazine composites based on boron nitride flakes deposited with copper particles. Mater Des 191:108698. https://doi.org/10.1016/j.matdes.2020.108698

    Article  CAS  Google Scholar 

  115. Morelli DT, Heremans JP (2002) Thermal conductivity of germanium silicon and carbon nitrides. Appl Phys Lett 81(27):5126–5128. https://doi.org/10.1063/1.1533840

    Article  CAS  Google Scholar 

  116. Dong Y, Meng M, Groves MM, Zhang C, Jb L (2018) Thermal conductivities of two-dimensional graphitic carbon nitrides by molecule dynamics simulation International. J Heat Mass Transfer 123:738–746. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.017

    Article  CAS  Google Scholar 

  117. Wang Y, Zhang X, Ding X, Zhang P, Shu M, Zhang Q, Gong Y, Zheng K, Tian X (2020) Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos B 199:108267. https://doi.org/10.1016/j.compositesb.2020.108267

    Article  CAS  Google Scholar 

  118. Wang Y, Zhang X, Ding X, Li Y, Zhang P, Shu M, Zhang Q, Gong Y, Zheng K, Wu B, Tian X (2021) Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy. Compos Sci Technol 205:108693. https://doi.org/10.1016/j.compscitech.2021.108693

    Article  CAS  Google Scholar 

  119. Yang N, Xu C, Hou J, Yao Y, Zhang Q, Grami ME, He L, Wang N, Qu X (2016) Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv 6(22):18279–18287. https://doi.org/10.1039/c6ra01084a

    Article  CAS  Google Scholar 

  120. Tsai MH, Tseng IH, Chiang JC, Li JJ (2014) Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Appl Mater Interfaces 6(11):8639–8645. https://doi.org/10.1021/am501323m

    Article  CAS  Google Scholar 

  121. Li R, Lv X, Yu J, Wang X, Huang P (2020) Dielectric thermally conductive and heat-resistant polyimide composite film filled with silver nanoparticle-modified hexagonal boron nitride high performance. Polymers 32(10):1181–1190. https://doi.org/10.1177/0954008320938846

  122. Akkoyun S, Akkoyun M (2021) Improvement of thermal conductivity of rigid polyurethane foams with aluminum nitride filler. Cell Polym 40(2):87–98. https://doi.org/10.1177/0262489321988970

    Article  CAS  Google Scholar 

  123. Ruan K, Gu J (2022) Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 55(10):4134–4145. https://doi.org/10.1021/acs.macromol.2c00491

    Article  CAS  Google Scholar 

  124. Giang T, Kim J (2016) Thermal conductivity of diglycidylester-terminated liquid crystalline epoxy/alumina composite. Mol Cryst Liq Cryst 629(1):12–26. https://doi.org/10.1080/15421406.2015.1107816

    Article  CAS  Google Scholar 

  125. Giang T, Kim J (2017) Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy–alumina composites. J Electron Mater 46(1):627–636. https://doi.org/10.1007/s11664-016-4704-1

    Article  CAS  Google Scholar 

  126. Yeo H, Islam AM, You NH, Ahn S, Goh M, Hahn JR, Jang SG (2017) Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos Sci Technol 141:99–105. https://doi.org/10.1016/j.compscitech.2017.01.016

    Article  CAS  Google Scholar 

  127. Yang X, Zhu J, Yang D, Zhang J, Guo Y, Zhong X, Kong J, Gu J (2020) High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Compos B 185:107784. https://doi.org/10.1016/j.compositesb.2020.107784

    Article  CAS  Google Scholar 

  128. Zhang RC, Huang Z, Huang Z, Zhong M, Zang D, Lu A, Lin Y, Millar B, Garet G, Turner J, Menary G, Ji D, Song L, Zhang Q, Zhang J, Sun D (2020) Uniaxially stretched polyethylene/boron nitride nanocomposite films with metal-like thermal conductivity. Compos Sci Technol 196:108154. https://doi.org/10.1016/j.compscitech.2020.108154

    Article  CAS  Google Scholar 

  129. Jiang F, Zhou S, Xu T, Song N, Ding P (2021) Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton. Compos Sci Technol 208:108779. https://doi.org/10.1016/j.compscitech.2021.108779

    Article  CAS  Google Scholar 

  130. Yu H, Guo P, Qin M, Han G, Chen L, Feng Y, Feng W (2022) Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos Sci Technol 222:109406. https://doi.org/10.1016/j.compscitech.2022.109406

    Article  CAS  Google Scholar 

  131. Huang T, Yang F, Wang T, Wang J, Li Y, Huang J, Chen M, Wu L (2022) Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Appl Mater Today 26:101299. https://doi.org/10.1016/j.apmt.2021.101299

    Article  Google Scholar 

  132. Chen J, Wang Z, Yi Z, Xie L, Liu Z, Zhang S, Chen C (2021) SiC whiskers nucleated on rgo and its potential role in thermal conductivity and electronic insulation. Chem Eng J 423:130181. https://doi.org/10.1016/j.cej.2021.130181

    Article  CAS  Google Scholar 

  133. Zhang X, Zhang H, Li D, Xu H, Huang Y, Liu Y, Wu D, Sun J (2021) Highly thermally conductive and electrically insulating polydimethylsiloxane composites prepared by ultrasonic-assisted forced infiltration for thermal management applications. Compos B 224:109207. https://doi.org/10.1016/j.compositesb.2021.109207

    Article  CAS  Google Scholar 

  134. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518. https://doi.org/10.1016/j.coco.2020.100518

    Article  Google Scholar 

  135. Chen J, Huang X, Sun B, Wang Y, Zhu Y, Jiang P (2017) Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl Mater Interfaces 9(36):30909–30917. https://doi.org/10.1021/acsami.7b08061

    Article  CAS  Google Scholar 

  136. Wang X, Wu P (2018) Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness superior thermal conductivity and electrical insulation. ACS Appl Mater Interfaces 10(40):34311–34321. https://doi.org/10.1021/acsami.8b12565

    Article  CAS  Google Scholar 

  137. Zou D, Huang X, Zhu Y, Chen J, Jiang P (2019) Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Compos Sci Technol 177:88–95. https://doi.org/10.1016/j.compscitech.2019.04.027

    Article  CAS  Google Scholar 

  138. Cao L, Wang J, Dong J, Zhao X, Li H-B, Zhang Q (2020) Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Compos B 188:107882. https://doi.org/10.1016/j.compositesb.2020.107882

    Article  CAS  Google Scholar 

  139. Jiang F, Song N, Ouyang R, Ding P (2021) Wall density-controlled thermal conductive and mechanical properties of three-dimensional vertically aligned boron nitride network-based polymeric composites. ACS Appl Mater Interfaces 13(6):7556–7566. https://doi.org/10.1021/acsami.0c22702

    Article  CAS  Google Scholar 

  140. Yang W, Wang Y, Li Y, Gao C, Tian X, Wu N, Geng Z, Che S, Yang F, Li Y (2021) Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos B 224:109168. https://doi.org/10.1016/j.compositesb.2021.109168

    Article  CAS  Google Scholar 

  141. Ma M, Chu Q, Lin H, Xu L, He H, Shi Y, Chen S, Wang X (2022) Highly anisotropic thermal conductivity and electrical insulation of nanofibrillated cellulose/Al2O3@rGO composite films: effect of the particle size. Nanotechnol 33(13):135711. https://doi.org/10.1088/1361-6528/ac44e7

    Article  Google Scholar 

  142. Wang H, Zhang Y, Niu H, Wu L, He X, Xu T, Wang N, Yao Y (2022) An electrospinning–electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Compos B 230:109505. https://doi.org/10.1016/j.compositesb.2021.109505

    Article  CAS  Google Scholar 

  143. Han J, Du G, Gao W, Bai H (2019) An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv Funct Mater 29(13):1900412. https://doi.org/10.1002/adfm.201900412

    Article  CAS  Google Scholar 

  144. Wang T, Zhang G, Zhang B, Liu S, Li D, Liu C (2021) Oriented boron nitride nanosheet films for thermal management and electrical insulation in electrical and electronic equipment. ACS Appl Nano Mater 4(4):4153–4161. https://doi.org/10.1021/acsanm.1c00484

    Article  CAS  Google Scholar 

  145. Bohacek J, Raudensky M, Karimi-Sibaki E (2019) Polymeric hollow fibers: uniform temperature of Li-ion cells in battery modules. Appl Therm Eng 159:113940. https://doi.org/10.1016/j.applthermaleng.2019.113940

    Article  CAS  Google Scholar 

  146. Ng DQ, Tseng YL, Shih YF, Lian HY, Yu YH (2017) Synthesis of novel phase change material microcapsule and its application. Polymer 133:250–262. https://doi.org/10.1016/j.polymer.2017.11.046

    Article  CAS  Google Scholar 

  147. Weng J, He Y, Ouyang D, Yang X, Zhang G, Wang J (2019) Thermal performance of PCM and branch-structured fins for cylindrical power battery in a high-temperature environment. Energy Convers Manage 200:112106. https://doi.org/10.1016/j.enconman.2019.112106

    Article  CAS  Google Scholar 

  148. Li J, Tang A, Shao X, Jin Y, Chen W, Xia D (2022) Experimental evaluation of heat conduction enhancement and lithium-ion battery cooling performance based on h-BN-based composite phase change materials. Int J Heat Mass Transfer 186:122487. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122487

    Article  CAS  Google Scholar 

  149. Zhang T, Gao Q, Gu Y, li Y, (2021) Studies on thermal management of lithium-ion battery using non-metallic heat exchanger. Appl Therm Eng 182:116095. https://doi.org/10.1016/j.applthermaleng.2020.116095

    Article  CAS  Google Scholar 

  150. Jeong S-H, Song J-B, Choi YH, Kim S-G, Go B-S, Park M, Lee H (2016) Effect of micro-ceramic fillers in epoxy composites on thermal and electrical stabilities of GdBCO coils. Compos B 94:190–196. https://doi.org/10.1016/j.compositesb.2016.03.065

    Article  CAS  Google Scholar 

  151. Yan W, Chen X, Lim JSK, Chen H, Gill V, Lambourne A, Hu X (2022) Epoxy-assisted ball milling of boron nitride towards thermally conductive impregnable composites. Compos A 156:106868. https://doi.org/10.1016/j.compositesa.2022.106868

    Article  CAS  Google Scholar 

  152. Meleshenko VN, Ogon’kov VG, Chirikov AV, Serebryannikov SV, Serebryannikov SS, Cherkasov AP (2017) The thermal conductivity of electrical-insulating materials and insulation systems. Russ Electr Eng 88(9):609–614. https://doi.org/10.3103/s1068371217090103

    Article  Google Scholar 

  153. Liu C, Zheng X, Yin M, Cheng X (2016) Design of high thermal conductivity insulation adhesive (H-Class) for low voltage motor. IEEE Trans Dielectr Electr Insul 23(4):1907–1914. https://doi.org/10.1109/tdei.2016.7556461

    Article  CAS  Google Scholar 

  154. Mazzanti G (2007) Analysis of the combined effects of load cycling thermal transients and electrothermal stress on life expectancy of high-voltage ac cables. IEEE Trans Power Delivery 22:2000–2009. https://doi.org/10.1109/tpwrd.2007.905547

    Article  Google Scholar 

  155. Du BX, Kong XX, Cui B, Li J (2017) Improved ampacity of buried HVDC cable with high thermal conductivity LDPE/BN insulation. IEEE Trans Dielectr Electr Insul 24(5):2667–2676. https://doi.org/10.1109/tdei.2017.006452

    Article  CAS  Google Scholar 

  156. Zhou Y, Peng S, Hu J, He J (2017) Polymeric insulation materials for HVDC cables: Development challenges and future perspective. IEEE Trans Dielectr Electr Insul 24:1308–1318. https://doi.org/10.1109/tdei.2017.006205

    Article  CAS  Google Scholar 

  157. Du BX, Kong XX, Li J, Xiao M (2019) High thermal conductivity insulation and sheathing materials for electric vehicle cable application. IEEE Trans Dielectr Electr Insul 26:1363–1370. https://doi.org/10.1109/tdei.2019.008069

    Article  CAS  Google Scholar 

  158. Yang J, Qi G, Tang L, Bao R, Bai L, Liu Z, Yang W, Xie B, Yang M (2016) Novel photodriven composite phase change materials with bioinspired modification of bn for solar-thermal energy conversion and storage. J Mater Chem A 4:9625–9634. https://doi.org/10.1039/c6ta03733j

    Article  CAS  Google Scholar 

  159. Zhong X, Yang X, Ruan K, Zhang J, Zhang H, Gu J (2022) Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy. Macromol Rapid Commun 43(1):2100580. https://doi.org/10.1002/marc.202100580

    Article  CAS  Google Scholar 

  160. Yang X, Zhong X, Zhang J, Gu J (2021) Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J Mater Sci Nanotechnol 68:209–215. https://doi.org/10.1016/j.jmst.2020.08.027

    Article  CAS  Google Scholar 

  161. Li Y, Zhang Y, Liu Y, Xie H, Yu W (2022) A comprehensive review for micro/nanoscale thermal mapping technology based on scanning thermal microscopy. J Therm Sci 31(4):32. https://doi.org/10.1007/s11630-022-1654-1

    Article  Google Scholar 

  162. Dong L, Li Y (2022) Experimental identification of topography-based artifact phenomenon for micro-/nanoscale thermal characterization of polymeric materials in scanning thermal microscopy. AIP Adv 12(4):045311. https://doi.org/10.1063/5.0088360

    Article  CAS  Google Scholar 

  163. Li Y, Mehra N, Ji T, Zhu J (2018) Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip-surface contact resistance models. Nanoscale Horiz 3(5):505–516. https://doi.org/10.1039/c8nh00043c

    Article  CAS  Google Scholar 

  164. Li QY, Katakami K, Ikuta T, Kohno M, Zhang X, Takahashi K (2019) Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon 141:92–98. https://doi.org/10.1016/j.carbon.2018.09.034

    Article  CAS  Google Scholar 

  165. Li QY, Zhang X, Takahashi K (2018) Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures. Int J Heat Mass Transfer 125:1230–1239. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.011

    Article  CAS  Google Scholar 

  166. Li QY, Xia K, Zhang J, Zhang Y, Li Q, Takahashi K, Zhang X (2017) Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. Nanoscale 9(30):10784–10793. https://doi.org/10.1039/c7nr01695f

    Article  CAS  Google Scholar 

  167. Yang J, Ziade E, Schmidt AJ (2016) Uncertainty analysis of thermoreflectance measurements. Rev Sci Instrum 87(1):014901. https://doi.org/10.1063/1.4939671

    Article  CAS  Google Scholar 

  168. Regner KT, Sellan DP, Su Z, Amon CH, McGaughey AJ, Malen JA (2013) Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat Commun 4(1):1–7. https://doi.org/10.1038/ncomms2630

    Article  CAS  Google Scholar 

  169. Sandell S, Chávez-Ángel E, El Sachat A, He J, Sotomayor Torres CM, Maire J (2020) Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures. J Appl Phys 128(13):131101. https://doi.org/10.1063/5.0020239

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the funding from the National Natural Science Foundation of China (51876112) and Shanghai Sailing Program (21YF1414200), the Discipline of Shanghai-Materials Science and Engineering, and Shanghai Engineering Research Center of Advanced Thermal Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifan Li or Wei Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Li, Y., Liu, Y. et al. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices. Adv Compos Hybrid Mater 6, 27 (2023). https://doi.org/10.1007/s42114-022-00584-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00584-2

Keywords

Navigation