Skip to main content
Log in

Influence of wood surface chemistry on the tensile and flexural properties of heat-treated mangrove/high-density polyethylene composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Mangrove wood fiber (MF) was treated at four different temperatures (120 °C, 140 °C, 160 °C and 180 °C) in order to improve its compatibility with polymer matrix. The chemo-structural, thermal and morphological characteristics of untreated and treated MF were analyzed. The chemical composition of the treated MF showed an increase in cellulose content from 46 to 56% at 120 °C, which decreased at further heating. The non-cellulosic constituents of the fiber were removed as indicated by the reduction in magnitude of absorbance peaks mainly at 3343 cm−1 and 1027 cm−1 in Fourier transform infrared spectroscopy. The X-ray diffraction depicted increased crystallinity with increased temperature due to the conversion of amorphous cellulose and some hemicelluloses to crystalline structures. Color spectroscopy showed higher values of lightness (L*) at 120 °C and 140 °C, with a corresponding increase in chroma coordinate a* and decrease in b* due to the chemical changes that occurred during the heat treatment. Surface morphology by field emission scanning electron microscopy revealed that heat treatment exposed the inner fibrillar feature of fiber, thereby increasing the roughness of the fiber surface. Thermogravimetry analysis further indicated that heat-treated MFs are more stable. Heat treatment improved the tensile strength and modulus of composites as fiber loading increased, while the flexural strength and modulus also showed the same trend. SEM images of tensile fractured surface indicated that the interfacial interaction between the matrix and untreated MF is weaker than the heat-treated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2016) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text. https://doi.org/10.1177/1528083716654468

    Article  Google Scholar 

  2. Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohyd Polym 171:163–172. https://doi.org/10.1016/j.carbpol.2017.04.096

    Article  CAS  Google Scholar 

  3. Xiong X, Shen SZ, Hua L, Liu JZ, Li X, Wan X, Miao M (2018) Finite element models of natural fibers and their composites: a review. J Reinf Plast Compos 37(9):617–635. https://doi.org/10.1177/0731684418755552

    Article  CAS  Google Scholar 

  4. Wang P, Liu J, Yu W, Zhou C (2011) Dynamic rheological properties of wood polymer composites: from linear to nonlinear behaviors. Polym Bull 66(5):683–701. https://doi.org/10.1007/s00289-010-0382-y

    Article  CAS  Google Scholar 

  5. Nirmal U, Hashim J, Ahmad MM (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104

    Article  CAS  Google Scholar 

  6. Nourbakhsh A, Ashori A, Ziaei Tabari H, Rezaei F (2010) Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polym Bull 65(7):691–700. https://doi.org/10.1007/s00289-010-0288-8

    Article  CAS  Google Scholar 

  7. Njuguna J, Wambua P, Pielichowski K, Kayvantash K (2011) Natural fibre-reinforced polymer composites and nanocomposites for automotive applications. In: Kalia S, Kaith SB, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites: green chemistry and technology. Springer, Berlin, pp 661–700. https://doi.org/10.1007/978-3-642-17370-7_23

    Chapter  Google Scholar 

  8. Siengchin S (2012) Impact, thermal and mechanical properties of high density polyethylene/flax/SiO2 composites: effect of flax reinforcing structures. J Reinf Plast Compos 31(14):959–966

    Article  CAS  Google Scholar 

  9. Sinha E, Rout SK (2008) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. J Mater Sci 43(8):2590–2601. https://doi.org/10.1007/s10853-008-2478-4

    Article  CAS  Google Scholar 

  10. Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P (2011) Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym Degrad Stab 96(5):818–822

    Article  CAS  Google Scholar 

  11. Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7):679–690

    Article  Google Scholar 

  12. Fang L, Xiong X, Wang X, Chen H, Mo X (2017) Effects of surface modification methods on mechanical and interfacial properties of high-density polyethylene-bonded wood veneer composites. J Wood Sci 63(1):65–73

    Article  CAS  Google Scholar 

  13. Yildiz S, Gezer ED, Yildiz UC (2006) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41(12):1762–1766

    Article  Google Scholar 

  14. dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714

    Article  Google Scholar 

  15. Joel EL, Bhimba V (2010) Isolation and characterization of secondary metabolites from the mangrove plant Rhizophora mucronata. Asian Pac J Trop Med 3(8):602–604

    Article  CAS  Google Scholar 

  16. Bandaranayake WM (1998) Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2(3):133–148. https://doi.org/10.1023/a:1009988607044

    Article  Google Scholar 

  17. Liang J-Z, Yang Q-Q (2007) Mechanical, thermal, and flow properties of HDPE-mica composites. J Thermoplast Compos Mater 20(2):225–236

    Article  CAS  Google Scholar 

  18. Bouafif H, Koubaa A, Perré P, Cloutier A (2009) Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos A Appl Sci Manuf 40(12):1975–1981

    Article  Google Scholar 

  19. Van Soest P, Robertson J (1979) Systems of analysis for evaluating fibrous feeds. In: Standardization of analytical methodology for feeds: proceedings…. IDRC, Ottawa, ON, Canada

  20. Fasanella CC, Montes CR, Rossi ML, Aguiar MM, Ferreira LF, Pupo MM, Salazar-Banda GR, Monteiro R (2018) Microscopic analysis of sugarcane bagasse following chemical and fungal treatment. Cellul Chem Technol 52(1–2):59–64

    CAS  Google Scholar 

  21. ASTM (2014) ASTM D638 standard test method for tensile properties of plastics. ASTM International, West Conshohocken

    Google Scholar 

  22. ASTM (2017) ASTM D790-17 standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, Pennsylvania

    Google Scholar 

  23. Baltazar-y-Jimenez A, Bismarck A (2007) Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose 14(2):115–127

    Article  CAS  Google Scholar 

  24. Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A (2008) Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol 68(1):215–227

    Article  CAS  Google Scholar 

  25. Kamdem D, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Eur J Wood Wood Prod 60(1):1–6

    Article  CAS  Google Scholar 

  26. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88(2):772–779

    Article  CAS  Google Scholar 

  27. Esteves B, Marques AV, Domingos I, Pereira H (2008) Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 42(5):369–384

    Article  CAS  Google Scholar 

  28. Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89(1):1–5. https://doi.org/10.1016/j.polymdegradstab.2004.10.017

    Article  CAS  Google Scholar 

  29. Ahmadzadeh A, Zakaria S (2008) Preparation of novolak resin by liquefaction of oil palm empty fruit bunches (EFB) and characterization of EFB residue. Polym Plast Technol Eng 48(1):10–16

    Article  Google Scholar 

  30. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159

    Article  Google Scholar 

  31. Baharuddin AS, Sulaiman A, Kim DH, Mokhtar MN, Hassan MA, Wakisaka M, Shirai Y, Nishida H (2013) Selective component degradation of oil palm empty fruit bunches (OPEFB) using high-pressure steam. Biomass Bioenergy 55:268–275

    Article  CAS  Google Scholar 

  32. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52(12):791–806

    Article  CAS  Google Scholar 

  33. Pereira H, Graça J, Rodrigues J (2003) Wood chemistry in relation to quality. In: Barnett J, Jeronimidis G (eds) Wood quality and its biological basis, Wiley, pp 53–86

  34. Liu R, Pang X, Yang Z (2017) Measurement of three wood materials against weathering during long natural sunlight exposure. Measurement 102:179–185

    Article  Google Scholar 

  35. Thambiraj S, Shankaran DR (2017) Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl Surf Sci 412:405–416

    Article  CAS  Google Scholar 

  36. Aydemir D, Kiziltas A, Erbas Kiziltas E, Gardner DJ, Gunduz G (2015) Heat treated wood–nylon 6 composites. Compos B Eng 68:414–423. https://doi.org/10.1016/j.compositesb.2014.08.040

    Article  CAS  Google Scholar 

  37. Abdullah M, Nazir M, Raza M, Wahjoedi B, Yussof A (2016) Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J Clean Prod 126:686–697

    Article  CAS  Google Scholar 

  38. Lafia-Araga RA, Hassan A, Yahya R, Rahman NA, Hornsby PR, Heidarian J (2012) Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. J Reinf Plast Compos 31(4):215–224

    Article  CAS  Google Scholar 

  39. Salleh FM, Hassan A, Yahya R, Azzahari AD (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos B Eng 58:259–266

    Article  CAS  Google Scholar 

  40. Petchwattana N, Covavisaruch S, Chanakul S (2012) Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene. J Polym Res 19(7):9921

    Article  Google Scholar 

  41. Pérez E, Famá L, Pardo S, Abad M, Bernal C (2012) Tensile and fracture behaviour of PP/wood flour composites. Compos B Eng 43(7):2795–2800

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by University of Malaya, Kuala Lumpur, Malaysia, through IPPP research Grant No. PG137-2016A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganiyat Olusola Adebayo or Aziz Hassan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebayo, G.O., Hassan, A., Yahya, R. et al. Influence of wood surface chemistry on the tensile and flexural properties of heat-treated mangrove/high-density polyethylene composites. Polym. Bull. 76, 6467–6486 (2019). https://doi.org/10.1007/s00289-019-02731-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02731-0

Keywords

Navigation