Skip to main content
Log in

Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Jute fibres, an environmentally and ecologically friendly product, were chemically modified by treatment with 1.26 M (5 wt%) solution of NaOH solution at room temperature for 2, 4 and 8 h. The above samples were characterized by small angle X-ray scattering (SAXS) technique and XRD for macromolecular and microstructural parameters of fibres before and after alkali treatment where as FT-IR and SEM was used for fine structural details and morphological studies of the fibres. Differential scanning calorimetry (DSC) and instron 1185 analyzed thermal and mechanical behaviour of the fibres. Comparison and analysis of results confirmed some changes in the macromolecular structure and microstructure of the fibres after chemical treatment due to swelling of macromolecules and removal of some non-crystalline constituents of the fibres. The findings conclude that change in crystallinity developed after alkali treatment resulting improvement in mechanical strength of the fibres. However, the removal of structural constituents after alkali treatment leads the thermal decomposition temperature of the cellulose went down to 360.62 °C after 8 h alkali treatment from 365.26 °C for raw jute fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khan F, Ahmed SR (1996) Polym Degrad Stabil 52:335

    Article  CAS  Google Scholar 

  2. Bledzki AK, Reihmane S, Gassan J (1996) J Appl Polym Sci 59:1329

    Article  CAS  Google Scholar 

  3. Gassan J, Bledzki AK (1999) J Appl Polym Sci 71(4):623

    Article  CAS  Google Scholar 

  4. Sarkar PB (1935) Indian J Chem Soc 12:23

    CAS  Google Scholar 

  5. Samal RK, Mohanty M, Panda BB (1995) J Polym Mater 12:235

    Google Scholar 

  6. Prasad SV, Pavithran C, Rohatgi PK (1983) J Mater Sci 18:1443

    Article  CAS  Google Scholar 

  7. Rout J, Mishra M, Nayak SK, Tripathy SS, Mohanty AK (1999) Polymer 99:489

    Google Scholar 

  8. Barton HM (1950) Phys Rev 79:211

  9. Vineyard GH (1948) Phys Rev 74:1076

    Article  CAS  Google Scholar 

  10. Kratky O, Laggner P (1987) Encycl Phys Sci Technol 14:693

    Google Scholar 

  11. Ratho T, Patel A (1995) J Poly Sci Poly Chem Ed 13(10):2345

    Article  Google Scholar 

  12. Mark H (1932) Physik and chemic der zellulose. Springer, Berlin, p 139

  13. Ratho T, Patel A (1981) J Phys D Appl Phys 14:2169; Hendricks SB (1930) Z Kristallogr 74:534–545 & the reference therein

  14. Porod G (1951) Kolloid Z 124:83. doi:10.1007/BF01512792

  15. Porod G (1952) Kolloid Z 125:51. doi:10.1007/BF01519615

  16. Vonk CG (1973) J Appl Cryst 6:81

    Article  CAS  Google Scholar 

  17. Roy AK, Bag SC, Sardar D, Sen SK (1991) J Appl Polym Sci 43:2187

    Article  CAS  Google Scholar 

  18. Roy SC (1960) Text Res J 30:451

    Article  CAS  Google Scholar 

  19. Porod G (1953) Kolloid Z Z Polym 133:16. doi:10.1007/BF01513900

  20. Ratho T, Sahu NC (1970) Kolloid ZZ Polym 236:43

    Article  CAS  Google Scholar 

  21. Sarkar PB, Mazumdar AK, Pal KB (1948) J Tex Inst T44:39

    Google Scholar 

  22. Misra T, Patra KC, Patel T (1984) Colloid Polym Sci 262:611

    Article  CAS  Google Scholar 

  23. Mering J, Tchoubar D (1968) J Appl Cryst 1:153

    Article  Google Scholar 

  24. Gerber T, Walter G, Krenold R (1982) J Appl Cryst 15:143

    Article  CAS  Google Scholar 

  25. Kortleve G, Vonk CG (1968) Kolloid Z Z Polym 225:124

    Article  CAS  Google Scholar 

  26. Mittelbach P, Porod G (1965) Kolloid Z Z Polym 202:40. doi:10.1007/BF01497184

  27. Ruland W (1971) J Appl Cryst 4:70

    Article  Google Scholar 

  28. Young RJ, Bowden PB, Ritchie JM, Rider JG (1973) J Mater Sci 8:23

    Article  CAS  Google Scholar 

  29. Cullity BD (1978) Elements of X-ray diffraction. Addision wisely Publishing Company Inc, London, p 286

  30. Segal L, Creely J, Martin, Conrad CM (1959) Tex Res J 29:786

  31. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Comp Part A 32:119

    Article  CAS  Google Scholar 

  32. Gassan J, Bledzki AK (1999) Comp Sci Tech 59:1303

    Article  CAS  Google Scholar 

  33. Khan MA, Hassan MM, Drzal LT (2005) Comp Part A 36:71

    Google Scholar 

  34. Tshboi M (1957) J Polym Sci 25:159

    Article  Google Scholar 

  35. Liang CY, Bassett KH, Mc Ginnes EA, Marchessault RH (1960) Tappi 43:1917

    Google Scholar 

  36. Sarkar PB, Mazumdar AK (1955) Text Res J 12:1016

    Article  Google Scholar 

  37. Vonk CG (1975) J Appl Cryst 8:340

    Article  Google Scholar 

  38. Prasad N, Patnaik J, Bohidar N, Mishra T (1998) J Appl Poly Sci 67:1735

    Article  Google Scholar 

  39. Mohlethaler K (1949) Biochem Biophys Acta 3:15

    Article  Google Scholar 

  40. Misra T, Bisoyi DK, Patel T, Patra KC, Patel A (1988) Poly J 20:739

    Article  CAS  Google Scholar 

  41. Khan MN (1995) Small angle x-ray scattering study of sisal fibre using correlation functions, PhD thesis, Sambalpur University, Orissa, India

  42. Topping J (1972) Error of observation and their treatment, 4th edn. Chapman and Hall, Science paper back

  43. Aziz SH, Ansell MP (2004) Comp Sci Tech 64:1219

    Article  CAS  Google Scholar 

  44. Paunikallio T, Suvanto M, Pakkanen TT (2004) J Appl Poly Sci 91:2676

    Article  CAS  Google Scholar 

  45. Ray D, Sarkar BK, Basak RK, Rana AK (2002) J App Poly Sci 85:2594

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Prof J. Belare, IIT, Bombay, India, for providing the SAXS facility. Prof. N.V. Bhat, Emeritus Professor of Physics, Bombay Textile Research Association, is acknowledged for usefull discussion and suggestion on SAXS data analysis. Prof. T.N. Tiwari, retired Professor of Physics, NIT, Rourkela, is acknowledged for thorough reading of the paper and valuable suggestion. Prof. S. Saha, NIRJAFT, Kolkata, is also acknowledged for help during the mechanical properties analysis and result interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, E., Rout, S.K. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. J Mater Sci 43, 2590–2601 (2008). https://doi.org/10.1007/s10853-008-2478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2478-4

Keywords

Navigation