Skip to main content
Log in

Dynamic rheological properties of wood polymer composites: from linear to nonlinear behaviors

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The microstructure of wood plastic composite (WPC) with respect to wood particle content and maleic anhydride-grafted polypropylene (MAHPP) compatibilizer is studied by both linear and nonlinear rheological methods in this article. The complete long characteristic relaxation behavior in linear region, which is closely related to the structure of wood particle aggregates and MAHPP compatibilizing effect at the interface, is limited by observing time. Fortunately, the Fourier transform rheology (FTR) by the stress control mode is found to be an effective method for further investigating the structure with long relaxation time in WPC system. The plateau value of I 31 at high stress and the range of ϕ 31 are proved to be corresponding to the content of wood particle agglomerates in the WPC melts and the type of interfacial hydrodynamic interaction. The interesting outcomes suggest that MAHPP do has the effect on changing the properties of the heterogeneous interface and confirm the difference of the structure with long relaxation time in WPC can be easily captured by the high sensitive FTR indeed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li TQ, Wolcott MP (2005) Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polym Eng Sci 45:549–559

    Article  CAS  Google Scholar 

  2. Li TQ, Wolcott MP (2006) Rheology of wood plastics melt. Part 3: nonlinear nature of the flow. Polym Eng Sci 46:114–121

    Article  Google Scholar 

  3. Marcovich NE, Reboredo MM, Kenny J, Aranguren MI (2004) Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheol Acta 43:293–303

    Article  CAS  Google Scholar 

  4. Leblanc JL (2010) Filled polymers: science and industrial applications. CRC Press, Boca Raton

    Google Scholar 

  5. Kim JW, Harper DP, Taylor AM (2009) Effect of wood species on the mechanical and thermal properties of wood-plastic composites. J Appl Polym Sci 112:1378–1385

    Article  CAS  Google Scholar 

  6. Godard F, Vincent M, Agassant JF, Vergnes B (2009) Rheological behavior and mechanical properties of sawdust/polyethylene composites. J Appl Polym Sci 112:2559–2566

    Article  CAS  Google Scholar 

  7. Zhang SY, Zhang YL, Bousmina M, Sain M, Choi P (2007) Effects of raw fiber materials, fiber content, and coupling agent content on selected properties of polyethylene/wood fiber composites. Polym Eng Sci 47:1678–1687

    Article  CAS  Google Scholar 

  8. Ghasemi I, Azizi H, Naeimian N (2008) Rheological behaviour of polypropylene/kenaf fibre/wood flour hybrid composite. Iran Polym J 17:191–198

    CAS  Google Scholar 

  9. Sombatsompop N, Yotinwattanakumtorn C, Thongpin C (2005) Influence of type and concentration of maleic anhydride grafted polypropylene and impact modifiers on mechanical properties of PP/wood sawdust composites. J Appl Polym Sci 97:475–484

    Article  CAS  Google Scholar 

  10. Rogers J, Simonsen J (2005) Interfacial shear strength of wood-plastic composites: a new pullout method using wooden dowels. J Adhes Sci Technol 19:975–985

    Article  CAS  Google Scholar 

  11. Harper D, Wolcott M (2004) Interaction between coupling agent and lubricants in wood–polypropylene composites. Composites A 35:385–394

    Article  Google Scholar 

  12. Borysiak S (2007) Determination of nucleating ability of wood for non-isothermal crystallisation of polypropylene. J Therm Anal Calorim 88:455–462

    Article  CAS  Google Scholar 

  13. Danyadi L, Renner K, Moczo J, Pukanszky B (2007) Wood flour filled polypropylene composites: interfacial adhesion and micromechanical deformations. Polym Eng Sci 47:1246–1255

    Article  CAS  Google Scholar 

  14. Gupta AK, Purwar SN (1984) Crystallization of PP in PP/SEBS blends and its correlation with tensile properties. J Appl Polym Sci 29:1595–1609

    Article  CAS  Google Scholar 

  15. Pukánszky B, Es M, Maurer FHJ, Vörös G (1994) Micromechanical deformations in particulate filled thermoplastics: volume strain measurements. J Mater Sci 29:2350–2358

    Article  Google Scholar 

  16. Yu W, Wu YJ, Yu RB, Zhou CX (2005) Dynamic rheology of the immiscible blends of liquid crystalline polymers and flexible chain polymers. Rheol Acta 45:105–115

    Article  CAS  Google Scholar 

  17. Li RM, Yu W, Zhou CX (2006) Phase behavior and its viscoelastic responses of poly(methyl methacrylate) and poly(styrene-co-maleic anhydride) blend systems. Polym Bull 56:455–466

    Article  CAS  Google Scholar 

  18. Hristov V, Takacs E, Vlachopoulos J (2006) Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/wood flour composites. Polym Eng Sci 46:1204–1214

    Article  CAS  Google Scholar 

  19. Li TQ, Wolcott MP (2006) Rheology of wood plastics melt. Part 2: effects of lubricating systems in HDPE/maple composites. Polym Eng Sci 46:464–473

    Article  CAS  Google Scholar 

  20. Nunez AJ, Kenny JM, Reboredo MM, Aranguren MI, Marcovich NE (2002) Thermal and dynamic mechanical characterization of polypropylene–wood flour composites. Polym Eng Sci 42:733–742

    Article  CAS  Google Scholar 

  21. Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ (2006) Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol Acta 45:239–249

    Article  CAS  Google Scholar 

  22. Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287:83–105

    Article  CAS  Google Scholar 

  23. Heymann L, Peukert S, Aksel N (2002) Investigation of the solid–liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46:93–112

    Article  CAS  Google Scholar 

  24. Leblanc JL (2003) Fourier transform rheometry on gum elastomers. J Appl Polym Sci 89:1101–1115

    Article  CAS  Google Scholar 

  25. Leblanc JL, Furtado CRG, Leite MCAM, Visconte LLY, de Souza AMF (2007) Effect of the fiber content and plasticizer type on the rheological and mechanical properties of poly(vinyl chloride)/green coconut fiber composites. J Appl Polym Sci 106:3653–3665

    Article  CAS  Google Scholar 

  26. Yu W, Wang P, Zhou CX (2009) General stress decomposition in nonlinear oscillatory shear flow. J Rheol 53:215–238

    Article  CAS  Google Scholar 

  27. Zhu ZY, Thompson T, Wang SQ, von Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824

    Article  CAS  Google Scholar 

  28. Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–422

    Article  CAS  Google Scholar 

  29. Carotenuto C, Grosso M, Maffettone PL (2008) Fourier transform rheology of dilute immiscible polymer blends: a novel procedure to probe blend morphology. Macromolecules 41:4492–4500

    Article  CAS  Google Scholar 

  30. Yu FY, Zhang HB (2010) Fourier-transform rheology studies on the crystallization of isotactic polypropylene in non-linear large strain oscillation shear fields. Acta Polym Sin 3:372–376

    Article  Google Scholar 

  31. Neidhofer T, Wilhelm M, Debbaut B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions. J Rheol 47:1351–1371

    Article  CAS  Google Scholar 

  32. Neidhofer T, Sioula S, Hadjichristidis N, Wilhelm M (2004) Distinguishing linear from star-branched polystyrene solutions with Fourier-transform rheology. Macromol Rapid Commun 25:1921–1926

    Article  Google Scholar 

  33. Ferec J, Heuzey MC, Ausias G, Carreau PJ (2008) Rheological behavior of fiber-filled polymers under large amplitude oscillatory shear flow. J Non-Newtonian Fluid Mech 151:89–100

    Article  CAS  Google Scholar 

  34. Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38:349–356

    Article  CAS  Google Scholar 

  35. Tian JH, Yu W, Zhou CX (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969

    Article  CAS  Google Scholar 

  36. Zhang XW, Pan Y, Zheng Q, Yi XS (2002) Polystyrene/Sn–Pb alloy blends. II. Effect of alloy particle surface treatment on dynamic rheological behavior. J Appl Polym Sci 86:3173–3179

    Article  CAS  Google Scholar 

  37. Mohanty S, Nayak SK (2007) Dynamic and steady state viscoelastic behavior and morphology of MAPP treated PP/sisal composites. Mat Sci Eng A 443:202–208

    Article  Google Scholar 

  38. Roths T, Marth M, Weese J, Honerkamp J (2001) A generalized regularization method for nonlinear ill-posed problems enhanced for nonlinear regularization terms. Comput Phys Commun 139:279–296

    Article  CAS  Google Scholar 

  39. Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107:51–65

    Article  CAS  Google Scholar 

  40. Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259

    Article  CAS  Google Scholar 

  41. Vittorias I, Parkinson M, Klimke K, Debbaut B, Wilhelm M (2007) Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the Pom-pom model. Rheol Acta 46:321–340

    Article  CAS  Google Scholar 

  42. Bricker JM, Butler JE (2006) Oscillatory shear of suspensions of noncolloidal particles. J Rheol 50:711–728

    Article  CAS  Google Scholar 

  43. Pine DJ, Gollub JP, Brady JF, Leshansky AM (2005) Chaos and threshold for irreversibility in sheared suspensions. Nature 438:997–1000

    Article  CAS  Google Scholar 

  44. Harlen OG, Koch DL (1997) Orientational drift of a fibre suspended in a dilute polymer solution during oscillatory shear flow. J Non-Newtonian Fluid Mech 73:81–93

    Article  CAS  Google Scholar 

  45. Wang SQ, Inn YW (1994) Stress-induced interfacial failure in filled polymer melts. Rheol Acta 33:108–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is partly supported by Shanghai Leading Academic Discipline Project (No. B202). W. Y. is supported by the SMC project of Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Liu, J., Yu, W. et al. Dynamic rheological properties of wood polymer composites: from linear to nonlinear behaviors. Polym. Bull. 66, 683–701 (2011). https://doi.org/10.1007/s00289-010-0382-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0382-y

Keywords

Navigation