Skip to main content
Log in

Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The wetting and moisture up-take behaviour, as well as the electrokinetic properties of various lignocellulosic fibres were characterised. Knowledge of surface and water uptake properties of this kind of materials will help to tailor their potential use in different end user applications. The surface tension of the fibres was determined from wetting measurements using the capillary rise technique. The wetting data were used to determine the surface tension of the fibres. Our results show that the surface tension of the lignocellulosic fibres is a linear function of their cellulose content. Zeta-potential measurements were exploited to characterise the surface chemistry of the fibres. Measuring the zeta-potential as function of time enables the rapid assessment of the water up-take, i.e. the swelling behaviour of the fibres. The results obtained by the zeta potential measurements correlate, with the exception of flax, in a linear manner with the results obtained from conventional moisture uptake measurements. Even though all lignocellulosic fibres are very hydrophilic due to the presence of polar oxygen containing groups they have different grades of hydrophilicity, which is also reflected in the different water uptake capabilities measured.

The wetting, moisture uptake and electrokinetic properties of the lignocellulosic fibres are determined by the availability of the surface functional groups present, which is usually consequence of the processes used to separate, and extract the fibres from the plant (retting), as well as any further processing used to improve the fibre quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MC:

Moisture content

RH:

Relative humidity

References

  • Albert A., Serjeant E.P. (1984). Ionization constants of typical acids and bases. In: Hall C.a. (eds), The Determination of Ionization Constants: a Laboratory Manual. Chapman and Hall, New York, pp. 166–174

    Google Scholar 

  • Aranberri-Askargorta I., Lampke T., Bismarck A. (2003). Wetting behaviour of flax fibres as reinforcement for polypropylene. J. Colloid Interf. Sci. 263(2):580–589

    Article  CAS  Google Scholar 

  • Barl B., Biliaderis C.G., Murray E.D. (1986). Effect of chemical pretreatments on the thermal degradation of corn husk lignocellulosics. J. Agric Food Chem 34(6):1019–1024

    Article  CAS  Google Scholar 

  • Bedouet L., Denys E., Courtois B. and Courtois J. Changes in esterified pectins during development in the flax stems and leaves. Carbohyd. Polym. In press, Corrected Proof

  • Bellmann C., Caspari A., Loan Doan T.T., Mäder E. (2004). Electrokinetic Properties of Natural Fibres. Environmental Electrokinetics, Pittsburgh, PA, pp. 1–14

    Google Scholar 

  • Bellmann C., Klinger C., Opfermann A., Bohme F., Adler H.-J.P. (2002). Evaluation of surface modification by electrokinetic measurements. Prog Org Coat. 44(2):93–98

    Article  CAS  Google Scholar 

  • Bismarck A., Aranberri-Askargorta I., Springer J., Lampke T., Wielage B., Stamboulis A., Shenderovich I., Limbach H.H. (2002). Surface characterization of flax, hemp and cellulose fibres; surface properties and the water uptake behaviour. Polym. Compos. 23(5):872–894

    Article  CAS  Google Scholar 

  • Bismarck A., Mishra S., Lampke T. (2005). Plant fibers as reinforcement for green composites. In: Mohanty A.K., Mirsa M., Drzal L.T. (eds), Natural Fibres, Biopolymers and their Composites. CRC Press, Boca Raton, pp. 37–108

    Google Scholar 

  • Bismarck A., Mohanty A.K., Aranberri-Askargorta I., Czapla S., Misra M., Hinrichsen G., Springer J. (2001). Surface characterization of natural fibres; surface properties and the water uptake behaviour of modified sisal and coir fibres. Green Chem 3(2):100–107

    Article  CAS  Google Scholar 

  • Bismarck A., Springer J., Mohanty A.K., Hinrichsen G., Khan M.A. (2000). Characterization of several modified jute fibers using zeta-potential measurements. Colloid Polym. Sci. 278(3):229–235

    Article  CAS  Google Scholar 

  • Bledzki A.K., Gassan J. (1996). Einfluß von haftvermittlern auf das feuchteverhalten naturfaservertärkter kunststoffe. Angew Makromol Chem 236(1):129–138

    Article  CAS  Google Scholar 

  • Bledzki A.K., Gassan J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2):221–274

    Article  CAS  Google Scholar 

  • Costa F.H.M.M., D’Almeida J.R.M. (1999). Effect of water absorption on the mechanical properties of sisal and jute fiber composites. Polym. Plast. Technol. Eng. 38(5):1081–1094

    CAS  Google Scholar 

  • Dodd R.B., Akin D.E. (2005). Recent developments in retting and measurement of fibre quality in natural fibres: Pro and Cons. In: Mohanty A.K., Mirsa M., Drzal L.T. (eds), Natural Fibres, Biopolymers and their Composites. CRC Press, Boca Raton, pp. 141–157

    Google Scholar 

  • Duvick D.N. (1952). Free amino acids in the developing endosperm of mazie. Am. J. Bot. 39(9):656–661

    Article  CAS  Google Scholar 

  • Fengel D., Wegener G. (1983). Influence of temperature. In: Fengel D., Wegener G. (eds), Wood: Chemistry, Ultra-Structure and Reactions. Walter de Gruyter, New York, pp. 319–344

    Google Scholar 

  • Fischer K., Topf W. (1988). Entwicklung objektiver Qualitätsfür Flachs Teil 2: Textiltechnologische Untersuchunge. Melliand Textilberichte. 12(Dez.):858–861

    Google Scholar 

  • Gusovius H.-J. and Müssig J. 1998. Der Einfluß von Ernteverfahren und Feldliegezeit auf die Faserqualität von Hanf. In: Proceedings of 5 Internationale Tagung, “Stoffliche Nutzung nachwachsender Rohstoffe”, Chemnitz, Germany, pp. 39–47

  • Jacobasch H.J., Simon F., Werner C., Bellmann C. (1996). Determination of the zeta potential from streaming potential and streaming current measurements. Technisches Messen. 63(12):447–452

    CAS  Google Scholar 

  • Joffe R., Andersons J., Wallstrom L. (2003). Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Composites Part A 34(7):603–612

    Article  CAS  Google Scholar 

  • Kanamaru K. (1960). Wasseraufnahme in ihrer Beziehung zur zeitlichen Erniedrigung des Z-Potentials von Fasernin Wasser. Kolloid-Z. 168(2):115–121

    Article  CAS  Google Scholar 

  • Kessler R.W., Blum A., Werner G. (1988). Entwichlung objektiver Qualitätskriterien für Flachs Teil 1: Chemische und morphologische Untersuchungen. Melliand Textilber 12. (Dez):854–857

    Google Scholar 

  • Kozlowski R. and Wladyka-Przybylak M. 2004. Uses of natural fibre reinforced plastics. In: Wallenberg F. and Weston N. (eds), Natural Fibres, Plastics and Composites. Kluwer Academic Publishers, USA, pp. 249–274

  • Kuehn N., Jacobasch H.-J., Lunkenheimer K. (1986). Zum Zusammenhang zwischen demKontaktwinkel zwischen Wasser und festen Polymeren und ihrem zeta-Potential gegenüber wäßrigen Lösungen. Acta. Polym. 37(6):394–396

    Article  CAS  Google Scholar 

  • Madan G.L., Shrivastava S.K. (1977). Electrokinetic studies of cotton. Colloid Polym. Sci. 255(3):269–275

    Article  CAS  Google Scholar 

  • Morrison W.H. III, Archibald D.D., Sharma H.S., Akin D.E. (2000). Chemical and physical characterization of water- and dew-retted flax fibers. Ind. Crop. Prod. 12(1):39–46

    Article  CAS  Google Scholar 

  • Morvan C., Demarty M., Thellier M. (1979). Titration of isolated cell-walls of Lemna-Minor-L. Plant Physiol. 63(6):1117–1122

    Article  CAS  Google Scholar 

  • Munder F., Fürll C., Hempel H. (2005). Processsing of bast fibre plants for industrial application. In: Mohanty A.K., Mirsa M., Drzal L.T. (eds), Natural Fibres, Biopolymers and their Composites. CRC Press, Boca Raton, pp. 109–140

    Google Scholar 

  • Ribitsch V., Stana-Kleinscheck K. (1998). Characterizing textile fibre surfaces with streaming potential measurements. J. Text. Res. 68(10):701–707

    Article  CAS  Google Scholar 

  • Ribitsch V., Stana-Kleinschek K., Jeler S. (1996). The influence of classical and enzymatic treatment on the surface charge of cellulose fibres. Colloid Polym. Sci. 274(4):388–394

    Article  CAS  Google Scholar 

  • Ribitsch V., Stana-Kleinschek K., Kreze T., Strnad S. (2001). The significance of surface charge and structure on the accessibility of cellulose fibres. Macromol. Mater. Eng. 286(10):648–654

    Article  CAS  Google Scholar 

  • Rowell R.M., Han J.S., Roswell J. (2000). Characterization and factors effecting fiber properties. In: Frollini E., AL L., LHC M. (eds), Natural Polymers and Agrofibers Bases Composites. Embrapa Instrumentacao Agropecuaria, Sao Carlos-S.P., Brazil, pp. 115–134

    Google Scholar 

  • Rowell R.M. (2004). Chemical Modification. In: Burley J., Evans J., Youngquist J.A. (eds), Encyclopedia of forest sciences. Elsevier Academic Press, Oxford, pp. 1269–1274

    Google Scholar 

  • Shi S.Q., Gardner D.J. (2000). A new model to determine contact angles on swelling polymer particles by the column wicking method. J. Adhes. Sci. Technol. 14(2):301–314

    Article  CAS  Google Scholar 

  • Sreekala M.S., Thomas S. (2003). Effect of fibre surface modification on water-sorption characteristics of palm fibres. Compos. Sci. Technol. 63(6):861–869

    Article  CAS  Google Scholar 

  • Stamboulis A., Baillie C.A., Peijs T. (2001). Effects of environmental conditions on mechanical and physical properties of flax fibres. Composites Part A 32(8): 1105-1115

    Article  Google Scholar 

  • Stana-Kleinschek K., Kreze T., Ribitsch V., Strnad S. (2001). Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloid Surf. A-Physicochem. Eng. Asp. 195(1–3):275–284

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K., Ribitsch V. (1998). Electrokinetic properties of processed cellulose fibres. Colloids Surfaces A 140(1/3):127–138

    Article  CAS  Google Scholar 

  • Tarchevsky I.A., Marchenko G.N. (1991). Cell wall composition. In: Backinowski L.V., Chlenov M.A. (eds), Cellulose: Biosynthesis and Structure. Springer, Berlin, pp. 9–31

    Google Scholar 

  • Tserki V., Zafeiropoulos N.E., Simon F., Panayiotou C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites A 36(8):1110–1118

    Article  CAS  Google Scholar 

  • Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. (1999). Effect of fibre surface treatment on the fibre-matrix bond strength of natural fibre reinforced composites. Composites B 30(3):309–320

    Article  Google Scholar 

  • van de Ven T.G.M. (1999). Effect of fibre conductivity on zeta potential measurements of pulp fibres. J. Pulp. Pap. Sci. 25(7):243–245

    Google Scholar 

  • van Hazendonk J.M., van der Putten J.C., Keurentjes J.T.F., Prins A. (1993). A simple experimental method for the measurement of the surface tension of cellulosic fibres and its relation with chemical composition. Colloids Surfaces A 81:251–261

    Article  Google Scholar 

  • van Oss C.J. (1993). Acid-base interfacial interactions in aqueous media . Colliod Surfaces A 78:1–49

    Article  Google Scholar 

  • van Oss C.J. (2002). Use of the combined Lifshitz-van der Waals and Lewis acid-base approaches in determining the apolar and polar contributions to surface and interfacial tensions and free energies. J. Adhes. Sci. Technol. 16(6): 669–678

    Article  Google Scholar 

  • van Soest P.J., Wine R.H. (1968). Determination of lignin and cellulose in acid-detergent fibre with permanganate. J. AOAC Internat 51(4):780–785

    Google Scholar 

  • Yuan X., Jayaraman K., Bhattacharyya D. (2004). Effect of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Composites A 35(12):1363–1374

    Article  CAS  Google Scholar 

  • Zafeiropoulos N.E., Williams D.R., Baillie C.A., Matthews F.L. (2002). Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Composites A 33(8):1083–1093

    Article  Google Scholar 

  • Zhironkin A.N., Volkov V.A. (1992). Investigation of the electrical double layer of cotton fibre in NaCl solutions. Colloid J. Russ. Acad. 54(4):470–475

    Google Scholar 

Download references

Acknowledgments

A. Baltazar-y-Jimenez gratefully acknowledges the Mexican Council of Science and Technology (CONACYT) for funding this research. The authors are grateful to Wigglesworth & Co. (UK), Hemcore Ltd. (UK), Heritage Arts & Crafts (the Philippines) and Lenzing Lyocell (Austria) for supplying the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bismarck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltazar-y-Jimenez, A., Bismarck, A. Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose 14, 115–127 (2007). https://doi.org/10.1007/s10570-006-9092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-006-9092-x

Keywords

Navigation