Skip to main content

Advertisement

Log in

Radionuclide-based theranostics — a promising strategy for lung cancer

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents.

Background

Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer.

Methods

We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field.

Conclusions

Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–87. https://doi.org/10.1016/j.jtho.2021.11.003.

    Article  PubMed  Google Scholar 

  3. Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94:1623–40. https://doi.org/10.1016/j.mayocp.2019.01.013.

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson AG, Chansky K, Crowley J, Beyruti R, Kubota K, Turrisi A, et al The International Association for the Study of Lung Cancer Lung Cancer Staging Project: proposals for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:300–11. https://doi.org/10.1016/j.jtho.2015.10.008.

  5. Zhou C, Li S, Liu J, Chu Q, Miao L, Cai L, et al International consensus on severe lung cancer-the first edition. Transl Lung Cancer Res. 2021;10:2633–66. https://doi.org/10.21037/tlcr-21-467.

  6. Alexander M, Kim SY, Cheng H. Update 2020: management of non-small cell lung cancer. Lung. 2020;198:897–907. https://doi.org/10.1007/s00408-020-00407-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wahl RL, Chareonthaitawee P, Clarke B, Drzezga A, Lindenberg L, Rahmim A, et al. Mars shot for nuclear medicine, molecular imaging, and molecularly targeted radiopharmaceutical therapy. J Nucl Med. 2021;62:6–14. https://doi.org/10.2967/jnumed.120.253450.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJ. The role of new PET tracers for lung cancer. Lung Cancer. 2016;94:7–14. https://doi.org/10.1016/j.lungcan.2016.01.010.

    Article  PubMed  Google Scholar 

  9. Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, et al The future of cancer diagnosis, treatment and surveillance: a systemic review on immunotherapy and immuno-PET radiotracers. Molecules. 2021;26. https://doi.org/10.3390/molecules26082201.

  10. Telo S, Calderoni L, Vichi S, Zagni F, Castellucci P, Fanti S. Alternative and new radiopharmaceutical agents for lung cancer. Curr Radiopharm. 2020;13:185–94. https://doi.org/10.2174/1874471013666191223151402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Q, Zhang X, Wei W, Cao M. PET imaging of lung cancers in precision medicine: current landscape and future perspective. Mol Pharm. 2022;19:3471–83. https://doi.org/10.1021/acs.molpharmaceut.2c00353.

    Article  CAS  PubMed  Google Scholar 

  12. Liberini V, Mariniello A, Righi L, Capozza M, Delcuratolo MD, Terreno E, et al NSCLC biomarkers to predict response to immunotherapy with checkpoint inhibitors (ICI): from the cells to in vivo images. Cancers (Basel). 2021; 13 https://doi.org/10.3390/cancers13184543.

  13. Schneider BJ, Daly ME, Kennedy EB, Antonoff MB, Broderick S, Feldman J, et al. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: American Society of Clinical Oncology endorsement of the American Society for Radiation Oncology evidence-based guideline. J Clin Oncol. 2018;36:710–9. https://doi.org/10.1200/jco.2017.74.9671.

    Article  CAS  PubMed  Google Scholar 

  14. Remon J, Soria JC, Peters S, clinicalguidelines@esmo.org EGCEa. Early and locally advanced non-small-cell lung cancer: an update of the ESMO clinical practice guidelines focusing on diagnosis, staging, systemic and local therapy. Ann Oncol. 2021; 32:1637–42. https://doi.org/10.1016/j.annonc.2021.08.1994.

  15. Gesthalter Y, Smyth R. Treatment of small cell lung cancer. Am J Respir Crit Care Med. 2022;205:P3-p4. https://doi.org/10.1164/rccm.2052P3.

    Article  PubMed  Google Scholar 

  16. Herzog BH, Devarakonda S, Govindan R. Overcoming chemotherapy resistance in SCLC. J Thorac Oncol. 2021;16:2002–15. https://doi.org/10.1016/j.jtho.2021.07.018.

    Article  CAS  PubMed  Google Scholar 

  17. Vinod SK, Hau E. Radiotherapy treatment for lung cancer: current status and future directions. Respirology. 2020;25(Suppl 2):61–71. https://doi.org/10.1111/resp.13870.

    Article  PubMed  Google Scholar 

  18. Singh B, Patwardhan RS, Jayakumar S, Sharma D, Sandur SK. Oxidative stress associated metabolic adaptations regulate radioresistance in human lung cancer cells. J Photochem Photobiol B. 2020;213:112080. https://doi.org/10.1016/j.jphotobiol.2020.112080.

    Article  CAS  PubMed  Google Scholar 

  19. Pan C, Liu H, Robins E, Song W, Liu D, Li Z, et al. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13:29. https://doi.org/10.1186/s13045-020-00862-w.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B. 2022;12:1163–85. https://doi.org/10.1016/j.apsb.2021.08.020.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Zheng J, Niu Y, Xue C, Yu Y, Tan K, et al. Long-term survival in extensive-stage small-cell lung cancer treated with different immune checkpoint inhibitors in multiple-line therapies: a case report and literature review. Front Immunol. 2022;13:1059331. https://doi.org/10.3389/fimmu.2022.1059331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective. Drug Resist Updat. 2021;59:100796. https://doi.org/10.1016/j.drup.2021.100796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jadvar H. Targeted radionuclide therapy: an evolution toward precision cancer treatment. AJR Am J Roentgenol. 2017;209:277–88. https://doi.org/10.2214/AJR.17.18264.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goldsmith SJ. Targeted radionuclide therapy: a historical and personal review. Semin Nucl Med. 2020;50:87–97. https://doi.org/10.1053/j.semnuclmed.2019.07.006.

    Article  PubMed  Google Scholar 

  25. Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60:13S-9S. https://doi.org/10.2967/jnumed.118.220566.

    Article  CAS  PubMed  Google Scholar 

  26. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35. https://doi.org/10.1056/NEJMoa1607427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ersahin D, Doddamane I, Cheng D. Targeted radionuclide therapy. Cancers (Basel). 2011;3:3838–55. https://doi.org/10.3390/cancers3043838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative imaging for targeted radionuclide therapy dosimetry - technical review. Theranostics. 2017;7:4551–65. https://doi.org/10.7150/thno.19782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2015;17. https://doi.org/10.3390/ijms17010033.

  30. Zakeri K, Narayanan D, Evans G, Prasanna P, Buchsbaum JC, Vikram B, et al. Advancing targeted radionuclide therapy through the National Cancer Institute’s Small Business Innovation Research Pathway. J Nucl Med. 2019;60:41–9. https://doi.org/10.2967/jnumed.118.214684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solnes LB, Werner RA, Jones KM, Sadaghiani MS, Bailey CR, Lapa C, et al. Theranostics: leveraging molecular imaging and therapy to impact patient management and secure the future of nuclear medicine. J Nucl Med. 2020;61:311–8. https://doi.org/10.2967/jnumed.118.220665.

    Article  CAS  PubMed  Google Scholar 

  32. Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, et al. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics. 2021;11:7911–47. https://doi.org/10.7150/thno.56639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Damiana TST, Dalm SU. Combination therapy, a promising approach to enhance the efficacy of radionuclide and targeted radionuclide therapy of prostate and breast cancer. Pharmaceutics. 2021;13. https://doi.org/10.3390/pharmaceutics13050674.

  34. Poels TT, Vuijk FA, de Geus-Oei LF, Vahrmeijer AL, Oprea-Lager DE, Swijnenburg RJ. Molecular targeted positron emission tomography imaging and radionuclide therapy of pancreatic ductal adenocarcinoma. Cancers (Basel). 2021;13. https://doi.org/10.3390/cancers13246164.

  35. Naraev BG, Ramirez RA, Kendi AT, Halfdanarson TR. Peptide receptor radionuclide therapy for patients with advanced lung carcinoids. Clin Lung Cancer. 2019;20:e376–92. https://doi.org/10.1016/j.cllc.2019.02.007.

    Article  CAS  PubMed  Google Scholar 

  36. Rao Z, Zhang Y, Liu L, Wang M, Zhang C [(177)Lu]Lu-FAP-2286 therapy in a case of right lung squamous cell carcinoma with systemic metastases. Eur J Nucl Med Mol Imaging. 2022 https://doi.org/10.1007/s00259-022-06048-5.

  37. Weber WA, Czernin J, Anderson CJ, Badawi RD, Barthel H, Bengel F, et al. The future of nuclear medicine, molecular imaging, and theranostics. J Nucl Med. 2020;61:263s–72s. https://doi.org/10.2967/jnumed.120.254532.

    Article  PubMed  Google Scholar 

  38. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. The Lancet Oncology. 2016;17:e542–51. https://doi.org/10.1016/s1470-2045(16)30406-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lantuejoul S, Sound-Tsao M, Cooper WA, Girard N, Hirsch FR, Roden AC, et al. PD-L1 testing for lung cancer in 2019: perspective from the IASLC Pathology Committee. J Thorac Oncol. 2020;15:499–519. https://doi.org/10.1016/j.jtho.2019.12.107.

    Article  CAS  PubMed  Google Scholar 

  40. Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020;383:1328–39. https://doi.org/10.1056/NEJMoa1917346.

    Article  CAS  PubMed  Google Scholar 

  41. Collins JM, Gulley JL. Product review: avelumab, an anti-PD-L1 antibody. Hum Vaccin Immunother. 2019;15:891–908. https://doi.org/10.1080/21645515.2018.1551671.

    Article  PubMed  Google Scholar 

  42. Chaft JE, Rimner A, Weder W, Azzoli CG, Kris MG, Cascone T. Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol. 2021;18:547–57. https://doi.org/10.1038/s41571-021-00501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24:1852–8. https://doi.org/10.1038/s41591-018-0255-8.

    Article  CAS  PubMed  Google Scholar 

  44. Smit J, Borm FJ, Niemeijer AN, Huisman MC, Hoekstra OS, Boellaard R, et al. PD-L1 PET/CT imaging with radiolabeled durvalumab in patients with advanced-stage non-small cell lung cancer. J Nucl Med. 2022;63:686–93. https://doi.org/10.2967/jnumed.121.262473.

    Article  CAS  PubMed  Google Scholar 

  45. Kelly MP, Makonnen S, Hickey C, Arnold TC, Giurleo JT, Tavare R, et al Preclinical PET imaging with the novel human antibody (89)Zr-DFO-REGN3504 sensitively detects PD-L1 expression in tumors and normal tissues. J Immunother Cancer. 2021;9. https://doi.org/10.1136/jitc-2020-002025.

  46. Christensen C, Kristensen LK, Alfsen MZ, Nielsen CH, Kjaer A. Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody. Eur J Nucl Med Mol Imaging. 2020;47:1302–13. https://doi.org/10.1007/s00259-019-04646-4.

    Article  CAS  PubMed  Google Scholar 

  47. Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD-L1 expression with immunoPET. Bioconjug Chem. 2018;29:96–103. https://doi.org/10.1021/acs.bioconjchem.7b00631.

    Article  CAS  PubMed  Google Scholar 

  48. Wen X, Shi C, Zhao L, Yao L, Xu D, Lin X, et al. Immuno-SPECT/PET imaging with radioiodinated anti-PD-L1 antibody to evaluate PD-L1 expression in immune-competent murine models and PDX model of lung adenocarcinoma. Nucl Med Biol. 2020;86–87:44–51. https://doi.org/10.1016/j.nucmedbio.2020.05.006.

    Article  CAS  PubMed  Google Scholar 

  49. Jagoda EM, Vasalatiy O, Basuli F, Opina ACL, Williams MR, Wong K, et al. Immuno-PET imaging of the programmed cell death-1 ligand (PD-L1) using a zirconium-89 labeled therapeutic antibody, avelumab. Mol Imaging. 2019;18:1536012119829986. https://doi.org/10.1177/1536012119829986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo H, Yang C, Kuang D, Shi S, Chan AW. Visualizing dynamic changes in PD-L1 expression in non-small cell lung carcinoma with radiolabeled recombinant human PD-1. Eur J Nucl Med Mol Imaging. 2022;49:2735–45. https://doi.org/10.1007/s00259-022-05680-5.

    Article  CAS  PubMed  Google Scholar 

  51. Mei Y, Chen Y, Sivaccumar JP, An Z, Xia N, Luo W. Research progress and applications of nanobody in human infectious diseases. Front Pharmacol. 2022;13:963978. https://doi.org/10.3389/fphar.2022.963978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arbabi-Ghahroudi M. Camelid single-domain antibodies: promises and challenges as lifesaving treatments. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23095009.

  53. Markham A. Envafolimab: first approval. Drugs. 2022;82:235–40. https://doi.org/10.1007/s40265-022-01671-w.

    Article  CAS  PubMed  Google Scholar 

  54. Xing Y, Chand G, Liu C, Cook GJR, O’Doherty J, Zhao L, et al. Early phase I study of a (99m)Tc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer. J Nucl Med. 2019;60:1213–20. https://doi.org/10.2967/jnumed.118.224170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou X, Jiang J, Yang X, Liu T, Ding J, Nimmagadda S, et al. First-in-humans evaluation of a PD-L1-binding peptide PET radiotracer in non-small cell lung cancer patients. J Nucl Med. 2022;63:536–42. https://doi.org/10.2967/jnumed.121.262045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Donnelly DJ, Smith RA, Morin P, Lipovsek D, Gokemeijer J, Cohen D, et al. Synthesis and biologic evaluation of a novel (18)F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med. 2018;59:529–35. https://doi.org/10.2967/jnumed.117.199596.

    Article  CAS  PubMed  Google Scholar 

  57. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9:4664. https://doi.org/10.1038/s41467-018-07131-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bouleau A, Nozach H, Dubois S, Kereselidze D, Chevaleyre C, Wang CI, et al. Optimizing immuno-PET imaging of tumor PD-L1 expression: pharmacokinetic, biodistribution, and dosimetric comparisons of (89)Zr-labeled anti-PD-L1 antibody formats. J Nucl Med. 2022;63:1259–65. https://doi.org/10.2967/jnumed.121.262967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 2022;13:964442. https://doi.org/10.3389/fimmu.2022.964442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pauken KE, Torchia JA, Chaudhri A, Sharpe AH, Freeman GJ. Emerging concepts in PD-1 checkpoint biology. Semin Immunol. 2021;52:101480. https://doi.org/10.1016/j.smim.2021.101480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther. 2022;7:331. https://doi.org/10.1038/s41392-022-01136-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Niemeijer AN, Oprea-Lager DE, Huisman MC, Hoekstra OS, Boellaard R, de Wit-van der Veen BJ, et al Study of (89)Zr-pembrolizumab PET/CT in patients with advanced-stage non-small cell lung cancer. J Nucl Med. 2022;63:362–7. https://doi.org/10.2967/jnumed.121.261926.

  63. da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69. https://doi.org/10.1146/annurev-pathol-011110-130206.

    Article  CAS  Google Scholar 

  64. Yu JJ, Zhou DD, Yang XX, Cui B, Tan FW, Wang J, et al. TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target. Nat Commun. 2020;11:3660. https://doi.org/10.1038/s41467-020-17385-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 2018;17:38. https://doi.org/10.1186/s12943-018-0777-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tan CS, Kumarakulasinghe NB, Huang YQ, Ang YLE, Choo JR, Goh BC, et al. Third generation EGFR TKIs: current data and future directions. Mol Cancer. 2018;17:29. https://doi.org/10.1186/s12943-018-0778-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Remon J, Steuer CE, Ramalingam SS, Felip E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol. 2018;29:i20–7. https://doi.org/10.1093/annonc/mdx704.

    Article  CAS  PubMed  Google Scholar 

  68. Su H, Seimbille Y, Ferl GZ, Bodenstein C, Fueger B, Kim KJ, et al. Evaluation of [(18)F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur J Nucl Med Mol Imaging. 2008;35:1089–99. https://doi.org/10.1007/s00259-007-0636-6.

    Article  CAS  PubMed  Google Scholar 

  69. Song Y, Xiao Z, Wang K, Wang X, Zhang C, Fang F, et al. Development and evaluation of (18)F-IRS for molecular imaging mutant EGF receptors in NSCLC. Sci Rep. 2017;7:3121. https://doi.org/10.1038/s41598-017-01443-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van de Stadt EA, Yaqub M, Lammertsma AA, Poot AJ, Schober PR, Schuit RC, et al. Quantification of [(18)F]afatinib using PET/CT in NSCLC patients: a feasibility study. EJNMMI Res. 2020;10:97. https://doi.org/10.1186/s13550-020-00684-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bahce I, Smit EF, Lubberink M, van der Veldt AA, Yaqub M, Windhorst AD, et al. Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin Cancer Res. 2013;19:183–93. https://doi.org/10.1158/1078-0432.CCR-12-0289.

    Article  CAS  PubMed  Google Scholar 

  72. Meng X, Loo BW, Ma L, Murphy JD, Sun X, Yu J. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non–small cell lung cancer treated with EGFR-TKI: a pilot study. Journal of Nuclear Medicine. 2011;52:1573–9. https://doi.org/10.2967/jnumed.111.092874.

    Article  CAS  PubMed  Google Scholar 

  73. Sun X, Xiao Z, Chen G, Han Z, Liu Y, Zhang C, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med. 2018;10. https://doi.org/10.1126/scitranslmed.aan8840.

  74. Danti G, Berti V, Abenavoli E, Briganti V, Linguanti F, Mungai F, et al. Diagnostic imaging of typical lung carcinoids: relationship between MDCT, (111)In-Octreoscan and (18)F-FDG-PET imaging features with Ki-67 index. Radiol Med. 2020;125:715–29. https://doi.org/10.1007/s11547-020-01172-4.

    Article  PubMed  Google Scholar 

  75. O’Byrne KJ, Ennis JT, Freyne PJ, Clancy LJ, Prichard JS, Carney DN. Scintigraphic imaging of small-cell lung cancer with [111In]pentetreotide, a radiolabelled somatostatin analogue. Br J Cancer. 1994;69:762–6. https://doi.org/10.1038/bjc.1994.144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lau SK, Johnson DS, Coel MN. Imaging of non-small-cell lung cancer with indium-111 pentetreotide. Clin Nucl Med. 2000;25:24–8. https://doi.org/10.1097/00003072-200001000-00006.

    Article  CAS  PubMed  Google Scholar 

  77. Kirsch CM, von Pawel J, Grau I, Tatsch K. Indium-111 pentetreotide in the diagnostic work-up of patients with bronchogenic carcinoma. Eur J Nucl Med. 1994;21:1318–25. https://doi.org/10.1007/bf02426696.

    Article  CAS  PubMed  Google Scholar 

  78. Graham MM, Gu X, Ginader T, Breheny P, Sunderland JJ. (68)Ga-DOTATOC imaging of neuroendocrine tumors: a systematic review and metaanalysis. J Nucl Med. 2017;58:1452–8. https://doi.org/10.2967/jnumed.117.191197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lapa C, Hänscheid H, Wild V, Pelzer T, Schirbel A, Werner RA, et al. Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy. Oncotarget. 2016;7:20033–40. https://doi.org/10.18632/oncotarget.7706.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Deppen SA, Liu E, Blume JD, Clanton J, Shi C, Jones-Jackson LB, et al. Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors. J Nucl Med. 2016;57:708–14. https://doi.org/10.2967/jnumed.115.163865.

    Article  CAS  PubMed  Google Scholar 

  81. Deppen SA, Blume J, Bobbey AJ, Shah C, Graham MM, Lee P, et al. 68Ga-DOTATATE compared with 111In-DTPA-octreotide and conventional imaging for pulmonary and gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis. J Nucl Med. 2016;57:872–8. https://doi.org/10.2967/jnumed.115.165803.

    Article  CAS  PubMed  Google Scholar 

  82. Liu F, Liu T, Xu X, Guo X, Li N, Xiong C, et al. Design, synthesis, and biological evaluation of (68)Ga-DOTA-PA1 for lung cancer: a novel PET tracer for multiple somatostatin receptor imaging. Mol Pharm. 2018;15:619–28. https://doi.org/10.1021/acs.molpharmaceut.7b00963.

    Article  CAS  PubMed  Google Scholar 

  83. Xia L, Guo X, Liu T, Xu X, Jiang J, Wang F, et al. Multimodality imaging of naturally active melanin nanoparticles targeting somatostatin receptor subtype 2 in human small-cell lung cancer. Nanoscale. 2019;11:14400–9. https://doi.org/10.1039/c9nr04371c.

    Article  CAS  PubMed  Google Scholar 

  84. Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner FP, et al. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J Nucl Med. 2016;57:741–6. https://doi.org/10.2967/jnumed.115.161034.

    Article  CAS  PubMed  Google Scholar 

  85. Gourni E, Demmer O, Schottelius M, D’Alessandria C, Schulz S, Dijkgraaf I, et al. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med. 2011;52:1803–10. https://doi.org/10.2967/jnumed.111.098798.

    Article  CAS  PubMed  Google Scholar 

  86. Watts A, Singh B, Basher R, Singh H, Bal A, Kapoor R, et al. 68Ga-Pentixafor PET/CT demonstrating higher CXCR4 density in small cell lung carcinoma than in non-small cell variant. Eur J Nucl Med Mol Imaging. 2017;44:909–10. https://doi.org/10.1007/s00259-017-3622-7.

    Article  CAS  PubMed  Google Scholar 

  87. Buck AK, Haug A, Dreher N, Lambertini A, Higuchi T, Lapa C, et al Imaging of C-X-C motif chemokine receptor 4 expression in 690 patients with solid or hematologic neoplasms using (68)Ga-PentixaFor PET. J Nucl Med. 2022. https://doi.org/10.2967/jnumed.121.263693.

  88. Schottelius M, Ludescher M, Richter F, Kapp TG, Kessler H, Wester HJ. Validation of [(125)I]CPCR4.3 as an investigative tool for the sensitive and specific detection of hCXCR4 and mCXCR4 expression in vitro and in vivo. EJNMMI Res. 2019;9:75. https://doi.org/10.1186/s13550-019-0545-2.

  89. Lau J, Kwon D, Rousseau E, Zhang Z, Zeisler J, Uribe CF, et al. [(68)Ga]Ga/[(177)Lu]Lu-BL01, a novel theranostic pair for targeting C-X-C chemokine receptor 4. Mol Pharm. 2019;16:4688–95. https://doi.org/10.1021/acs.molpharmaceut.9b00808.

    Article  CAS  PubMed  Google Scholar 

  90. Weiss ID, Jacobson O, Kiesewetter DO, Jacobus JP, Szajek LP, Chen X, et al. Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol Imaging Biol. 2012;14:106–14. https://doi.org/10.1007/s11307-010-0466-y.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nimmagadda S, Pullambhatla M, Stone K, Green G, Bhujwalla ZM, Pomper MG. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res. 2010;70:3935–44. https://doi.org/10.1158/0008-5472.CAN-09-4396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beer AJ, Schwaiger M. Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev. 2008;27:631–44. https://doi.org/10.1007/s10555-008-9158-3.

    Article  CAS  PubMed  Google Scholar 

  93. Chen H, Niu G, Wu H, Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin alphavbeta3. Theranostics. 2016;6:78–92. https://doi.org/10.7150/thno.13242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, et al. Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med. 2008;49:22–9. https://doi.org/10.2967/jnumed.107.045864.

    Article  PubMed  Google Scholar 

  95. Mittra ES, Goris ML, Iagaru AH, Kardan A, Burton L, Berganos R, et al. Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging α(v)β(3) integrin levels. Radiology. 2011;260:182–91. https://doi.org/10.1148/radiol.11101139.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu S, Liu Z, Chen K, Yan Y, Watzlowik P, Wester HJ, et al. 18F-labeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol Imaging Biol. 2010;12:530–8. https://doi.org/10.1007/s11307-009-0284-2.

    Article  PubMed  Google Scholar 

  97. Wan W, Guo N, Pan D, Yu C, Weng Y, Luo S, et al. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med. 2013;54:691–8. https://doi.org/10.2967/jnumed.112.113563.

    Article  CAS  PubMed  Google Scholar 

  98. Gao S, Wu H, Li W, Zhao S, Teng X, Lu H, et al. A pilot study imaging integrin alphavbeta3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging. 2015;42:2029–37. https://doi.org/10.1007/s00259-015-3119-1.

    Article  CAS  PubMed  Google Scholar 

  99. Wei Y, Qin X, Liu X, Zheng J, Luan X, Zhou Y, et al. Tumor angiogenesis at baseline identified by (18)F-Alfatide II PET/CT may predict survival among patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. J Transl Med. 2022;20:63. https://doi.org/10.1186/s12967-022-03256-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Du X, Zhang Y, Chen L, Mi B, You Q, Xu Y, et al. Comparing the differential diagnostic values of (18)F-alfatide II PET/CT between tuberculosis and lung cancer patients. Contrast Media Mol Imaging. 2018;2018:8194678. https://doi.org/10.1155/2018/8194678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mi B, Yu C, Pan D, Yang M, Wan W, Niu G, et al. Pilot prospective evaluation of (18)F-alfatide II for detection of skeletal metastases. Theranostics. 2015;5:1115–21. https://doi.org/10.7150/thno.12938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kang F, Wang Z, Li G, Wang S, Liu D, Zhang M, et al. Inter-heterogeneity and intra-heterogeneity of alphavbeta3 in non-small cell lung cancer and small cell lung cancer patients as revealed by (68)Ga-RGD2 PET imaging. Eur J Nucl Med Mol Imaging. 2017;44:1520–8. https://doi.org/10.1007/s00259-017-3696-2.

    Article  CAS  PubMed  Google Scholar 

  103. Zheng K, Liang N, Zhang J, Lang L, Zhang W, Li S, et al. 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J Nucl Med. 2015;56:1823–7. https://doi.org/10.2967/jnumed.115.160648.

    Article  CAS  PubMed  Google Scholar 

  104. Kang F, Wang S, Tian F, Zhao M, Zhang M, Wang Z, et al. Comparing the diagnostic potential of 68Ga-alfatide II and 18F-FDG in differentiating between non-small cell lung cancer and tuberculosis. J Nucl Med. 2016;57:672–7. https://doi.org/10.2967/jnumed.115.167924.

    Article  CAS  PubMed  Google Scholar 

  105. Zhu Z, Miao W, Li Q, Dai H, Ma Q, Wang F, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med. 2012;53:716–22. https://doi.org/10.2967/jnumed.111.098988.

    Article  PubMed  Google Scholar 

  106. Jin X, Liang N, Wang M, Meng Y, Jia B, Shi X, et al. Integrin imaging with (99m)Tc-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from non-small cell lung cancer. Radiology. 2016;281:958–66. https://doi.org/10.1148/radiol.2016150813.

    Article  PubMed  Google Scholar 

  107. Arrieta O, Garcia-Perez FO, Michel-Tello D, Ramirez-Tirado LA, Pitalua-Cortes Q, Cruz-Rico G, et al. Response assessment of (68)Ga-DOTA-E-[c(RGDfK)](2) PET/CT in lung adenocarcinoma patients treated with nintedanib plus docetaxel. J Nucl Med. 2018;59:403–9. https://doi.org/10.2967/jnumed.117.192393.

    Article  CAS  PubMed  Google Scholar 

  108. Sharma P, Singh SS, Gayana S. Fibroblast activation protein inhibitor PET/CT: a promising molecular imaging tool. Clin Nucl Med. 2021;46:e141–50. https://doi.org/10.1097/rlu.0000000000003489.

    Article  PubMed  Google Scholar 

  109. Altmann A, Haberkorn U, Siveke J. The latest developments in imaging of fibroblast activation protein. J Nucl Med. 2021;62:160–7. https://doi.org/10.2967/jnumed.120.244806.

    Article  CAS  PubMed  Google Scholar 

  110. Giesel FL, Adeberg S, Syed M, Lindner T, Jimenez-Franco LD, Mavriopoulou E, et al. FAPI-74 PET/CT using either (18)F-AlF or cold-kit (68)Ga labeling: biodistribution, radiation dosimetry, and tumor delineation in lung cancer patients. J Nucl Med. 2021;62:201–7. https://doi.org/10.2967/jnumed.120.245084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801–5. https://doi.org/10.2967/jnumed.119.227967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou X, Wang S, Xu X, Meng X, Zhang H, Zhang A, et al. Higher accuracy of [(68) Ga]Ga-DOTA-FAPI-04 PET/CT comparing with 2-[(18)F]FDG PET/CT in clinical staging of NSCLC. Eur J Nucl Med Mol Imaging. 2022;49:2983–93. https://doi.org/10.1007/s00259-022-05818-5.

    Article  CAS  PubMed  Google Scholar 

  113. Zboralski D, Hoehne A, Bredenbeck A, Schumann A, Nguyen M, Schneider E, et al. Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. Eur J Nucl Med Mol Imaging. 2022;49:3651–67. https://doi.org/10.1007/s00259-022-05842-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pang Y, Zhao L, Meng T, Xu W, Lin Q, Wu H, et al. PET imaging of fibroblast activation protein in various types of cancers by using (68)Ga-FAP-2286: comparison with (18)F-FDG and (68)Ga-FAPI-46 in a single-center, prospective study. J Nucl Med. 2022. https://doi.org/10.2967/jnumed.122.264544.

  115. Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer. 2022;10. https://doi.org/10.1136/jitc-2022-004711.

  116. Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy. J Immunother Cancer. 2020;8. https://doi.org/10.1136/jitc-2020-000957.

  117. Wang X, Zhou M, Chen B, Liu H, Fang J, Xiang S, et al. Preclinical and exploratory human studies of novel (68)Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur J Nucl Med Mol Imaging. 2022;49:2584–94. https://doi.org/10.1007/s00259-021-05672-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jiang J, Zhang M, Li G, Liu T, Wan Y, Liu Z, et al Evaluation of 64Cu radiolabeled anti-hPD-L1 Nb6 for positron emission tomography imaging in lung cancer tumor mice model. Bioorganic & Medicinal Chemistry Letters. 2020; 30. https://doi.org/10.1016/j.bmcl.2019.126915.

  119. Verona M, Rubagotti S, Croci S, Sarpaki S, Borgna F, Tosato M, et al Preliminary study of a 1,5-benzodiazepine-derivative labelled with indium-111 for CCK-2 receptor targeting. Molecules. 2021; 26. https://doi.org/10.3390/molecules26040918.

  120. van de Stadt EA, Yaqub M, Lammertsma AA, Poot AJ, Schuit RC, Remmelzwaal S, et al. Identifying advanced stage NSCLC patients who benefit from afatinib therapy using (18)F-afatinib PET/CT imaging. Lung Cancer. 2021;155:156–62. https://doi.org/10.1016/j.lungcan.2021.03.01.

    Article  PubMed  Google Scholar 

  121. van Loon J, Even AJG, Aerts H, Ollers M, Hoebers F, van Elmpt W, et al. PET imaging of zirconium-89 labelled cetuximab: a phase I trial in patients with head and neck and lung cancer. Radiother Oncol. 2017;122:267–73. https://doi.org/10.1016/j.radonc.2016.11.020.

    Article  CAS  PubMed  Google Scholar 

  122. Huang S, Han Y, Chen M, Hu K, Qi Y, Sun P, et al. Radiosynthesis and biological evaluation of (18)F-labeled 4-anilinoquinazoline derivative ((18)F-FEA-Erlotinib) as a potential EGFR PET agent. Bioorg Med Chem Lett. 2018;28:1143–8. https://doi.org/10.1016/j.bmcl.2017.08.066.

    Article  CAS  PubMed  Google Scholar 

  123. Lu X, Wang C, Li X, Gu P, Jia L, Zhang L. Synthesis and preliminary evaluation of (18)F-icotinib for EGFR-targeted PET imaging of lung cancer. Bioorg Med Chem. 2019;27:545–51. https://doi.org/10.1016/j.bmc.2018.12.034.

    Article  CAS  PubMed  Google Scholar 

  124. Yamaguchi A, Achmad A, Hanaoka H, Heryanto YD, Bhattarai A, Ratianto, et al Immuno-PET imaging for non-invasive assessment of cetuximab accumulation in non-small cell lung cancer. BMC Cancer. 2019; 19. https://doi.org/10.1186/s12885-019-6238-4.

  125. Li K, Tavare R, Zettlitz KA, Mumenthaler SM, Mallick P, Zhou Y, et al. Anti-MET immunoPET for non-small cell lung cancer using novel fully human antibody fragments. Mol Cancer Ther. 2014;13:2607–17. https://doi.org/10.1158/1535-7163.MCT-14-0363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Han Z, Xiao Y, Wang K, Yan J, Xiao Z, Fang F, et al. Development of a SPECT tracer to image c-Met expression in a xenograft model of non-small cell lung cancer. J Nucl Med. 2018;59:1686–91. https://doi.org/10.2967/jnumed.117.206730.

    Article  CAS  PubMed  Google Scholar 

  127. Lin Q, Zhang Y, Fu Z, Hu B, Si Z, Zhao Y, et al. Synthesis and evaluation of (18)F labeled crizotinib derivative [(18)F]FPC as a novel PET probe for imaging c-MET-positive NSCLC tumor. Bioorg Med Chem. 2020;28:115577. https://doi.org/10.1016/j.bmc.2020.115577.

    Article  CAS  PubMed  Google Scholar 

  128. Pool M, Terwisscha van Scheltinga AGT, Kol A, Giesen D, de Vries EGE, Lub-de Hooge MN. (89)Zr-Onartuzumab PET imaging of c-MET receptor dynamics. Eur J Nucl Med Mol Imaging. 2017;44:1328–36. https://doi.org/10.1007/s00259-017-3672-x.

  129. Terwisscha van Scheltinga AG, Lub-de Hooge MN, Hinner MJ, Verheijen RB, Allersdorfer A, Hulsmeyer M, et al In vivo visualization of MET tumor expression and anticalin biodistribution with the MET-specific anticalin 89Zr-PRS-110 PET tracer. J Nucl Med. 2014;55:665–71. https://doi.org/10.2967/jnumed.113.124941.

  130. Cavaliere A, Sun S, Lee S, Bodner J, Li Z, Huang Y, et al. Development of [(89)Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2021;48:383–94. https://doi.org/10.1007/s00259-020-04978-6.

    Article  CAS  PubMed  Google Scholar 

  131. Gnesin S, Muller J, Burger IA, Meisel A, Siano M, Fruh M, et al. Radiation dosimetry of (18)F-AzaFol: a first in-human use of a folate receptor PET tracer. EJNMMI Res. 2020;10:32. https://doi.org/10.1186/s13550-020-00624-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Feng H, Zhang H, Wang M, Vannam R, Wang H, Yan X, et al. Improving tumor-to-background contrast through hydrophilic tetrazines: the construction of (18) F-labeled PET agents targeting nonsmall cell lung carcinoma. Chemistry. 2020;26:4690–4. https://doi.org/10.1002/chem.202000028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chomet M, Schreurs M, Nguyen M, Howng B, Villanueva R, Krimm M, et al. The tumor targeting performance of anti-CD166 Probody drug conjugate CX-2009 and its parental derivatives as monitored by (89)Zr-immuno-PET in xenograft bearing mice. Theranostics. 2020;10:5815–28. https://doi.org/10.7150/thno.44334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Halley A, Hugentobler A, Icard P, Porret E, Sobrio F, Lerochais JP, et al. Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2005;32:1026–32. https://doi.org/10.1007/s00259-005-1812-1.

    Article  PubMed  Google Scholar 

  135. Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M, Herth F, Koukouraki S, Macke HR, et al. Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using(68)Ga-DOTATOC PET and comparison with (18)F-FDG PET. Eur J Nucl Med Mol Imaging. 2006;33:823–30. https://doi.org/10.1007/s00259-005-0063-5.

    Article  PubMed  Google Scholar 

  136. Lewin J, Cullinane C, Akhurst T, Waldeck K, Watkins DN, Rao A, et al. Peptide receptor chemoradionuclide therapy in small cell carcinoma: from bench to bedside. Eur J Nucl Med Mol Imaging. 2015;42:25–32. https://doi.org/10.1007/s00259-014-2888-2.

    Article  CAS  PubMed  Google Scholar 

  137. Poret B, Desrues L, Bonin MA, Pedard M, Dubois M, Leduc R, et al Development of novel (111)-In-labelled DOTA urotensin II analogues for targeting the UT receptor overexpressed in solid tumours. Biomolecules. 2020; 10. https://doi.org/10.3390/biom10030471.

  138. England CG, Jiang D, Hernandez R, Sun H, Valdovinos HF, Ehlerding EB, et al. ImmunoPET imaging of CD146 in murine models of intrapulmonary metastasis of non-small cell lung cancer. Mol Pharm. 2017;14:3239–47. https://doi.org/10.1021/acs.molpharmaceut.7b00216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang H, Meng AM, Li SH, Zhou XL. A nanobody targeting carcinoembryonic antigen as a promising molecular probe for non-small cell lung cancer. Mol Med Rep. 2017;16:625–30. https://doi.org/10.3892/mmr.2017.6677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Azad BB, Chatterjee S, Lesniak WG, Lisok A, Pullambhatla M, Bhujwalla ZM, et al. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts. Oncotarget. 2016;7:12344–58. https://doi.org/10.18632/oncotarget.7111.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Luo H, England CG, Graves SA, Sun H, Liu G, Nickles RJ, et al. PET imaging of VEGFR-2 expression in lung cancer with 64Cu-labeled ramucirumab. J Nucl Med. 2016;57:285–90. https://doi.org/10.2967/jnumed.115.166462.

    Article  CAS  PubMed  Google Scholar 

  142. Kang L, Jiang D, Ehlerding EB, Barnhart TE, Ni D, Engle JW, et al. Noninvasive trafficking of brentuximab vedotin and PET imaging of CD30 in lung cancer murine models. Mol Pharm. 2018;15:1627–34. https://doi.org/10.1021/acs.molpharmaceut.7b01168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ehlerding EB, England CG, Jiang D, Graves SA, Kang L, Lacognata S, et al. CD38 as a PET imaging target in lung cancer. Mol Pharm. 2017;14:2400–6. https://doi.org/10.1021/acs.molpharmaceut.7b00298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kunihiro AG, Sarrett SM, Lastwika KJ, Solan JL, Pisarenko T, Keinänen O, et al. CD133 as a biomarker for an autoantibody-to-immunoPET paradigm for the early detection of small cell lung cancer. J Nucl Med. 2022;63:1701–7. https://doi.org/10.2967/jnumed.121.263511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krug LM, Milton DT, Jungbluth AA, Chen LC, Quaia E, Pandit-Taskar N, et al. Targeting Lewis Y (Le(y)) in small cell lung cancer with a humanized monoclonal antibody, hu3S193: a pilot trial testing two dose levels. J Thorac Oncol. 2007;2:947–52. https://doi.org/10.1097/JTO.0b013e3181560dcc.

    Article  PubMed  Google Scholar 

  146. Quaia E, Krug LM, Pandit-Taskar N, Nagel A, Reuter VE, Humm J, et al. The value of gamma camera and computed tomography data set coregistration to assess Lewis Y antigen targeting in small cell lung cancer by (111)Indium-labeled humanized monoclonal antibody 3S193. Eur J Radiol. 2008;67:292–9. https://doi.org/10.1016/j.ejrad.2007.07.004.

    Article  PubMed  Google Scholar 

  147. Shaghaghi Z, Abedi SM, Hosseinimehr SJ. Tricine co-ligand improved the efficacy of (99m)Tc-HYNIC-(Ser)3–J18 peptide for targeting and imaging of non-small-cell lung cancer. Biomed Pharmacother. 2018;104:325–31. https://doi.org/10.1016/j.biopha.2018.05.037.

    Article  CAS  PubMed  Google Scholar 

  148. Hausner SH, Bold RJ, Cheuy LY, Chew HK, Daly ME, Davis RA, et al. Preclinical development and first-in-human imaging of the integrin αvβ6 with [18F]αvβ6-binding peptide in metastatic carcinoma. Clinical Cancer Research. 2019;25:1206–15. https://doi.org/10.1158/1078-0432.Ccr-18-2665.

    Article  CAS  PubMed  Google Scholar 

  149. Flechsig P, Lindner T, Loktev A, Roesch S, Mier W, Sauter M, et al. PET/CT imaging of NSCLC with a alphavbeta6 integrin-targeting peptide. Mol Imaging Biol. 2019;21:973–83. https://doi.org/10.1007/s11307-018-1296-6.

    Article  CAS  PubMed  Google Scholar 

  150. Ren J, Zhu S, Zhang G, Tan X, Qiu L, Lin J, et al. (68)Ga-labeled cystine knot peptide targeting integrin alphavbeta6 for lung cancer PET imaging. Mol Pharm. 2022;19:2620–8. https://doi.org/10.1021/acs.molpharmaceut.2c00313.

    Article  CAS  PubMed  Google Scholar 

  151. Quigley NG, Tomassi S, Di Leva FS, Di Maro S, Richter F, Steiger K, et al. Click-Chemistry (CuAAC) Trimerization of an alphav beta6 integrin targeting Ga-68-peptide: enhanced contrast for in-vivo PET imaging of human lung adenocarcinoma xenografts. Chembiochem. 2020;21:2836–43. https://doi.org/10.1002/cbic.202000200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, et al. In vivo PET imaging of the cancer integrin alphavbeta6 using (68)Ga-labeled cyclic RGD nonapeptides. J Nucl Med. 2017;58:671–7. https://doi.org/10.2967/jnumed.116.182824.

    Article  CAS  PubMed  Google Scholar 

  153. Baum RP, Kulkarni HR, Muller D, Satz S, Danthi N, Kim YS, et al. First-in-human study demonstrating tumor-angiogenesis by PET/CT imaging with (68)Ga-NODAGA-THERANOST, a high-affinity peptidomimetic for alphavbeta3 integrin receptor targeting. Cancer Biother Radiopharm. 2015;30:152–9. https://doi.org/10.1089/cbr.2014.1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu B, Feng Y, Zhang JY, Li HM, Li XD, Jia HL, et al. Imaging of bronchioloalveolar carcinoma in the mice with the alphabeta3 integrin-targeted tracer (99m)Tc-RGD-4CK. Transl Res. 2013;162:174–80. https://doi.org/10.1016/j.trsl.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  155. Huang CW, Hsieh WC, Hsu ST, Lin YW, Chung YH, Chang WC, et al. The use of PET imaging for prognostic integrin alpha2beta1 phenotyping to detect non-small cell lung cancer and monitor drug resistance responses. Theranostics. 2017;7:4013–28. https://doi.org/10.7150/thno.19304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zheng Y, Wang H, Tan H, Cui X, Yao S, Zang J, et al. Evaluation of lung cancer and neuroendocrine neoplasm in a single scan by targeting both somatostatin receptor and integrin alphavbeta3. Clin Nucl Med. 2019;44:687–94. https://doi.org/10.1097/RLU.0000000000002680.

    Article  PubMed  Google Scholar 

  157. Chen L, Wang L, Yan J, Ma C, Lu J, Chen G, et al. 131I-labeled monoclonal antibody targeting neuropilin receptor type-2 for tumor SPECT imaging. Int J Oncol. 2017;50:649–59. https://doi.org/10.3892/ijo.2016.3.

    Article  CAS  PubMed  Google Scholar 

  158. Ehlerding EB, England CG, Majewski RL, Valdovinos HF, Jiang D, Liu G, et al. ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm. 2017;14:1782–9. https://doi.org/10.1021/acs.molpharmaceut.7b00056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kok IC, Hooiveld JS, van de Donk PP, Giesen D, van der Veen EL, Lub-de Hooge MN, et al. (89)Zr-pembrolizumab imaging as a non-invasive approach to assess clinical response to PD-1 blockade in cancer. Ann Oncol. 2022;33:80–8. https://doi.org/10.1016/j.annonc.2021.10.213.

    Article  CAS  PubMed  Google Scholar 

  160. Kim HY, Li R, Ng TSC, Courties G, Rodell CB, Prytyskach M, et al Quantitative imaging of tumor-associated macrophages and their

  161. Wu Y, Hao G, Ramezani S, Saha D, Zhao D, Sun X, et al. [(68) Ga]-HP-DO3A-nitroimidazole: a promising agent for PET detection of tumor hypoxia. Contrast Media Mol Imaging. 2015;10:465–72. https://doi.org/10.1002/cmmi.1649.

    Article  CAS  PubMed  Google Scholar 

  162. Castellanos E, Feld E, Horn L. Driven by mutations: the predictive value of mutation subtype in EGFR-mutated non-small cell lung cancer. J Thorac Oncol. 2017;12:612–23. https://doi.org/10.1016/j.jtho.2016.12.014.

    Article  PubMed  Google Scholar 

  163. Eychenne R, Bouvry C, Bourgeois M, Loyer P, Benoist E, Lepareur N. Overview of radiolabeled somatostatin analogs for cancer imaging and therapy. Molecules. 2020; 25. https://doi.org/10.3390/molecules25174012.

  164. Edelman MJ, Clamon G, Kahn D, Magram M, Lister-James J, Line BR. Targeted radiopharmaceutical therapy for advanced lung cancer: phase I trial of rhenium Re188 P2045, a somatostatin analog. J Thorac Oncol. 2009;4:1550–4. https://doi.org/10.1097/JTO.0b013e3181bf1070.

    Article  PubMed  Google Scholar 

  165. Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864–70. https://doi.org/10.2967/jnumed.111.091165.

    Article  CAS  PubMed  Google Scholar 

  166. Yang J, Kan Y, Ge BH, Yuan L, Li C, Zhao W. Diagnostic role of Gallium-68 DOTATOC and Gallium-68 DOTATATE PET in patients with neuroendocrine tumors: a meta-analysis. Acta Radiol. 2014;55:389–98. https://doi.org/10.1177/0284185113496679.

    Article  PubMed  Google Scholar 

  167. Brabander T, van der Zwan WA, Teunissen JJM, Kam BLR, Feelders RA, de Herder WW, et al. Long-term efficacy, survival, and safety of [(177)Lu-DOTA(0), Tyr(3)]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res. 2017;23:4617–24. https://doi.org/10.1158/1078-0432.CCR-16-2743.

    Article  CAS  PubMed  Google Scholar 

  168. Hognasbacka A, Poot AJ, Vugts DJ, van Dongen G, Windhorst AD. The development of positron emission tomography tracers for in vivo targeting the kinase domain of the epidermal growth factor receptor. Pharmaceuticals (Basel). 2022;15. https://doi.org/10.3390/ph15040450.

  169. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415–22. https://doi.org/10.2967/jnumed.118.210443.

    Article  CAS  PubMed  Google Scholar 

  170. Pandit-Taskar N. Targeted radioimmunotherapy and theranostics with alpha emitters. J Med Imaging Radiat Sci. 2019;50:S41-s4. https://doi.org/10.1016/j.jmir.2019.07.006.

    Article  PubMed  Google Scholar 

  171. Bailly C, Vidal A, Bonnemaire C, Kraeber-Bodéré F, Chérel M, Pallardy A, et al. Potential for nuclear medicine therapy for glioblastoma treatment. Front Pharmacol. 2019;10:772. https://doi.org/10.3389/fphar.2019.00772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen S, Yu L, Jiang C, Zhao Y, Sun D, Li S, et al. Pivotal study of iodine-131–labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. Journal of Clinical Oncology. 2005;23:1538–47. https://doi.org/10.1200/jco.2005.06.108.

    Article  PubMed  Google Scholar 

  173. Yu L, Ju DW, Chen W, Li T, Xu Z, Jiang C, et al. 131I-chTNT radioimmunotherapy of 43 patients with advanced lung cancer. Cancer Biother Radiopharm. 2006;21:5–14. https://doi.org/10.1089/cbr.2006.21.5.

    Article  PubMed  Google Scholar 

  174. Wang H, Cao C, Li B, Chen S, Yin J, Shi J, et al. Immunogenicity of iodine 131 chimeric tumor necrosis therapy monoclonal antibody in advanced lung cancer patients. Cancer Immunol Immunother. 2008;57:677–84. https://doi.org/10.1007/s00262-007-0406-0.

    Article  CAS  PubMed  Google Scholar 

  175. Navalkissoor S, Grossman A. Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology. 2019;108:256–64. https://doi.org/10.1159/000494760.

    Article  CAS  PubMed  Google Scholar 

  176. Pouget JP, Constanzo J. Revisiting the radiobiology of targeted alpha therapy. Front Med (Lausanne). 2021;8:692436. https://doi.org/10.3389/fmed.2021.692436.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, part 1: α therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74. https://doi.org/10.2967/jnumed.112.112482.

    Article  CAS  PubMed  Google Scholar 

  178. Lakes AL, An DD, Gauny SS, Ansoborlo C, Liang BH, Rees JA, et al. Evaluating (225)Ac and (177)Lu radioimmunoconjugates against antibody-drug conjugates for small-cell lung cancer. Mol Pharm. 2020;17:4270–9. https://doi.org/10.1021/acs.molpharmaceut.0c00703.

    Article  CAS  PubMed  Google Scholar 

  179. Ballal S, Yadav MP, Bal C, Sahoo RK, Tripathi M. Broadening horizons with (225)Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to (177)Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging. 2020;47:934–46. https://doi.org/10.1007/s00259-019-04567-2.

    Article  CAS  PubMed  Google Scholar 

  180. Jadvar H, Colletti PM. Targeted α-therapy in non-prostate malignancies. Eur J Nucl Med Mol Imaging. 2021;49:47–53. https://doi.org/10.1007/s00259-021-05405-0.

    Article  PubMed  Google Scholar 

  181. Tafreshi NK, Pandya DN, Tichacek CJ, Budzevich MM, Wang Z, Reff JN, et al. Preclinical evaluation of [(225)Ac]Ac-DOTA-TATE for treatment of lung neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging. 2021;48:3408–21. https://doi.org/10.1007/s00259-021-05315-1.

    Article  CAS  PubMed  Google Scholar 

  182. Jackson MR, Falzone N, Vallis KA. Advances in anticancer radiopharmaceuticals. Clin Oncol (R Coll Radiol). 2013;25:604–9. https://doi.org/10.1016/j.clon.2013.06.004.

    Article  CAS  PubMed  Google Scholar 

  183. Alcocer Ávila ME, Hindié E, Champion C. How to explain the sensitivity of DNA double-strand breaks yield to (125)I position? Int J Radiat Biol. 2022:1–6. https://doi.org/10.1080/09553002.2022.2047822.

  184. Li L, Quang TS, Gracely EJ, Kim JH, Emrich JG, Yaeger TE, et al. A phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg. 2010;113:192–8. https://doi.org/10.3171/2010.2.Jns091211.

    Article  PubMed  Google Scholar 

  185. Grudzinski J, Marsh I, Titz B, Jeffery J, Longino M, Kozak K, et al. CLR 125 auger electrons for the targeted radiotherapy of triple-negative breast cancer. Cancer Biother Radiopharm. 2018;33:87–95. https://doi.org/10.1089/cbr.2017.2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Reubi JC, Waser B. Triple-peptide receptor targeting in vitro allows detection of all tested gut and bronchial NETs. J Nucl Med. 2015;56:613–5. https://doi.org/10.2967/jnumed.114.153189.

    Article  CAS  PubMed  Google Scholar 

  187. Fawwaz M, Mishiro K, Nishii R, Sawazaki I, Shiba K, Kinuya S, et al. Synthesis and fundamental evaluation of radioiodinated rociletinib (CO-1686) as a probe to lung cancer with L858R/T790M mutations of epidermal growth factor receptor (EGFR). Molecules. 2020;25. https://doi.org/10.3390/molecules25122914.

  188. Takagi H, Zhao S, Muto S, Yokouchi H, Nishihara H, Harada T, et al. Delta-like 1 homolog (DLK1) as a possible therapeutic target and its application to radioimmunotherapy using (125)I-labelled anti-DLK1 antibody in lung cancer models (HOT1801 and FIGHT004). Lung Cancer. 2021;153:134–42. https://doi.org/10.1016/j.lungcan.2021.01.014.

    Article  CAS  PubMed  Google Scholar 

  189. Cornelissen B, Vallis KA. Targeting the nucleus: an overview of auger-electron radionuclide therapy. Curr Drug Discov Technol. 2010;7:263–79. https://doi.org/10.2174/157016310793360657.

    Article  CAS  PubMed  Google Scholar 

  190. Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki PO, et al. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med. 2009;50:2033–41. https://doi.org/10.2967/jnumed.109.066993.

    Article  PubMed  Google Scholar 

  191. Idrissou MB, Pichard A, Tee B, Kibedi T, Poty S, Pouget JP. Targeted radionuclide therapy using auger electron emitters: the quest for the right vector and the right radionuclide. Pharmaceutics. 2021;13. https://doi.org/10.3390/pharmaceutics13070980.

  192. Violet JA, Farrugia G, Skene C, White J, Lobachevsky P, Martin R. Triple targeting of auger emitters using octreotate conjugated to a DNA-binding ligand and a nuclear localizing signal. Int J Radiat Biol. 2016;92:707–15. https://doi.org/10.3109/09553002.2016.1157278.

    Article  CAS  PubMed  Google Scholar 

  193. Pusceddu S, Prinzi N, Tafuto S, Ibrahim T, Filice A, Brizzi MP, et al. Association of upfront peptide receptor radionuclide therapy with progression-free survival among patients with enteropancreatic neuroendocrine tumors. JAMA Netw Open. 2022;5:e220290. https://doi.org/10.1001/jamanetworkopen.2022.0290.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Satapathy S, Mittal BR. 177Lu-DOTATATE peptide receptor radionuclide therapy versus everolimus in advanced pancreatic neuroendocrine tumors: a systematic review and meta-analysis. Nucl Med Commun. 2019;40:1195–203. https://doi.org/10.1097/mnm.0000000000001103.

    Article  CAS  PubMed  Google Scholar 

  195. Ricci C, Lamberti G, Ingaldi C, Mosconi C, Pagano N, Alberici L, et al Treatment of advanced gastro-entero-pancreatic neuro-endocrine tumors: a systematic review and network meta-analysis of phase III randomized controlled trials. Cancers (Basel). 2021; 13. https://doi.org/10.3390/cancers13020358.

  196. Ballal S, Yadav MP, Damle NA, Sahoo RK, Bal C. Concomitant 177Lu-DOTATATE and capecitabine therapy in patients with advanced neuroendocrine tumors: a long-term-outcome, toxicity, survival, and quality-of-life study. Clin Nucl Med. 2017;42:e457–66. https://doi.org/10.1097/rlu.0000000000001816.

    Article  PubMed  Google Scholar 

  197. Kim C, Liu SV, Subramaniam DS, Torres T, Loda M, Esposito G, et al Phase I study of the (177)Lu-DOTA(0)-Tyr(3)-octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung. J Immunother Cancer. 2020;8. https://doi.org/10.1136/jitc-2020-000980.

  198. Hagemann UB, Ellingsen C, Schuhmacher J, Kristian A, Mobergslien A, Cruciani V, et al. Mesothelin-targeted thorium-227 conjugate (MSLN-TTC): preclinical evaluation of a new targeted alpha therapy for mesothelin-positive cancers. Clin Cancer Res. 2019;25:4723–34. https://doi.org/10.1158/1078-0432.CCR-18-3476.

    Article  CAS  PubMed  Google Scholar 

  199. Chen Z, Gao H, Li M, Fang S, Li G, Guo L. Targeted radionuclide therapy for lung cancer with iodine-131-labeled peptide in a nude-mouse model. Anticancer Drugs. 2017;28:480–8. https://doi.org/10.1097/CAD.0000000000000481.

    Article  CAS  PubMed  Google Scholar 

  200. Ming H, Fang L, Gao J, Li C, Ji Y, Shen Y, et al. Antitumor effect of nanoparticle (131)I-labeled arginine-glycine-aspartate-bovine serum albumin-polycaprolactone in lung cancer. AJR Am J Roentgenol. 2017;208:1116–26. https://doi.org/10.2214/AJR.16.16947.

    Article  PubMed  Google Scholar 

  201. Ince I, Muftuler ZB, Medine EI, Guldu OK, Takan G, Ergonul A, et al. Thymoquinone glucuronide conjugated magnetic nanoparticle for bimodal imaging and treatment of cancer as a novel theranostic platform. Curr Radiopharm. 2021;14:23–36. https://doi.org/10.2174/2211556009666200413085800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Liu X, Jiang C, Zhang D, Gao M, Peng F, Huang D, et al. Tumor necrosis targeted radiotherapy of non-small cell lung cancer using radioiodinated protohypericin in a mouse model. Oncotarget. 2015;6:26400–10. https://doi.org/10.18632/oncotarget.4568.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, et al. Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using (177)Lu-FAP-2286: first-in-humans results. J Nucl Med. 2022;63:415–23. https://doi.org/10.2967/jnumed.120.259192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li X, Fu H, Wang J, Liu W, Deng H, Zhao P, et al. Multimodality labeling of NGR-functionalized hyaluronan for tumor targeting and radiotherapy. Eur J Pharm Sci. 2021;161:105775. https://doi.org/10.1016/j.ejps.2021.105775.

    Article  CAS  PubMed  Google Scholar 

  205. Stein R, Govindan SV, Chen S, Reed L, Richel H, Griffiths GL, et al. Radioimmunotherapy of a human lung cancer xenograft with monoclonal antibody RS7: evaluation of (177)Lu and comparison of its efficacy with that of (90)Y and residualizing (131)I. J Nucl Med. 2001;42:967–74.

    CAS  PubMed  Google Scholar 

  206. Zhao L, Chen H, Guo Z, Fu K, Yao L, Fu L, et al. Targeted radionuclide therapy in patient-derived xenografts using (177)Lu-EB-RGD. Mol Cancer Ther. 2020;19:2034–43. https://doi.org/10.1158/1535-7163.MCT-19-1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pirooznia N, Abdi K, Beiki D, Emami F, Arab SS, Sabzevari O, et al. (177)Lu-labeled cyclic RGD peptide as an imaging and targeted radionuclide therapeutic agent in non-small cell lung cancer: biological evaluation and preclinical study. Bioorg Chem. 2020;102:104100. https://doi.org/10.1016/j.bioorg.2020.104100.

    Article  CAS  PubMed  Google Scholar 

  208. Subbiah V, Erwin W, Mawlawi O, McCoy A, Wages D, Wheeler C, et al. Phase I study of P-cadherin-targeted radioimmunotherapy with (90)Y-FF-21101 monoclonal antibody in solid tumors. Clin Cancer Res. 2020;26:5830–42. https://doi.org/10.1158/1078-0432.CCR-20-003.

    Article  CAS  PubMed  Google Scholar 

  209. Yoshioka H, Yamamoto S, Hanaoka H, Iida Y, Paudyal P, Higuchi T, et al. In vivo therapeutic effect of CDH3/P-cadherin-targeting radioimmunotherapy. Cancer Immunol Immunother. 2012;61:1211–20. https://doi.org/10.1007/s00262-011-1186-0.

    Article  CAS  PubMed  Google Scholar 

  210. Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A, Mikolajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38:1788–97. https://doi.org/10.1007/s00259-011-1833-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Chang YJ, Ho CL, Cheng KH, Kuo WI, Lee WC, Lan KL, et al. Biodistribution, pharmacokinetics and radioimmunotherapy of (188)Re-cetuximab in NCI-H292 human lung tumor-bearing nude mice. Invest New Drugs. 2019;37:961–72. https://doi.org/10.1007/s10637-018-00718-8.

    Article  CAS  PubMed  Google Scholar 

  212. Xiao J, Xu X, Li X, Li Y, Liu G, Tan H, et al Re-188 enhances the inhibitory effect of bevacizumab in non-small-cell lung cancer. Molecules. 2016;21. https://doi.org/10.3390/molecules21101308.

  213. Munaweera I, Shi Y, Koneru B, Saez R, Aliev A, Di Pasqua AJ, et al. Chemoradiotherapeutic magnetic nanoparticles for targeted treatment of nonsmall cell lung cancer. Mol Pharm. 2015;12:3588–96. https://doi.org/10.1021/acs.molpharmaceut.5b00304.

    Article  CAS  PubMed  Google Scholar 

  214. Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22168661.

  215. Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214:2243–55. https://doi.org/10.1084/jem.20161950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Gill MR, Falzone N, Du Y, Vallis KA. Targeted radionuclide therapy in combined-modality regimens. The Lancet Oncology. 2017;18:e414–23. https://doi.org/10.1016/s1470-2045(17)30379-0.

    Article  CAS  PubMed  Google Scholar 

  217. Chan TG, O’Neill E, Habjan C, Cornelissen B. Combination strategies to improve targeted radionuclide therapy. J Nucl Med. 2020;61:1544–52. https://doi.org/10.2967/jnumed.120.248062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Jin P, Li J, Meng Y, Wu L, Bai M, Yu J, et al. PET/CT metabolic patterns in systemic immune activation: a new perspective on the assessment of immunotherapy response and efficacy. Cancer Lett. 2021;520:91–9. https://doi.org/10.1016/j.canlet.2021.06.028.

    Article  CAS  PubMed  Google Scholar 

  219. Kim J, Lee H, Huang BW. Lung cancer: diagnosis, treatment principles, and screening. Am Fam Physician. 2022;105:487–94.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (82101916), the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (No. LHDMZ22H300005), Major project of Science and Technology Program of Jinhua, China (No. 2022–3-039), the University of Wisconsin – Madison, and the National Institutes of Health (P30 CA014520 and T32 CA009206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyu Chen, Weibo Cai or Kai Wang.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Weibo Cai is a scientific advisor, stockholder, and grantee of Focus-X Therapeutics, Inc.; a consultant and grantee of Actithera, Inc.; a consultant of Rad Source Technologies, Inc.; a scientific advisor of Portrai, Inc.; and a scientific advisor and stockholder rTR Technovation Corporation. All other authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Chest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Hsu, J.C., Guo, J. et al. Radionuclide-based theranostics — a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 50, 2353–2374 (2023). https://doi.org/10.1007/s00259-023-06174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06174-8

Keywords

Navigation