Skip to main content

Advertisement

Log in

Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Shikimic acid is an important intermediate for the manufacture of the antiviral drug oseltamivir (Tamiflu®) and many other pharmaceutical compounds. Much of its existing supply is obtained from the seeds of Chinese star anise (Illicium verum). Nevertheless, plants cannot supply a stable source of affordable shikimate along with laborious and cost-expensive extraction and purification process. Microbial biosynthesis of shikimate through metabolic engineering and synthetic biology approaches represents a sustainable, cost-efficient, and environmentally friendly route than plant-based methods. Metabolic engineering allows elevated shikimate production titer by inactivating the competing pathways, increasing intracellular level of key precursors, and overexpressing rate-limiting enzymes. The development of synthetic and systems biology-based novel technologies have revealed a new roadmap for the construction of high shikimate-producing strains. This review elaborates the enhanced biosynthesis of shikimate by utilizing an array of traditional metabolic engineering along with novel advanced technologies. The first part of the review is focused on the mechanistic pathway for shikimate production, use of recombinant and engineered strains, improving metabolic flux through the shikimate pathway, chemically inducible chromosomal evolution, and bioprocess engineering strategies. The second part discusses a variety of industrially pertinent compounds derived from shikimate with special reference to aromatic amino acids and phenazine compound, and main engineering strategies for their production in diverse bacterial strains. Towards the end, the work is wrapped up with concluding remarks and future considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn J, Hong J, Park M, Lee H, Lee E, Kim C, Lee J, Choi E, Jung J, Lee H (2009) Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl Environ Microbiol 75(11):3528–3534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arseneault T, Goyer C, Filion M (2013) Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology 103:995–1000

    Article  PubMed  CAS  Google Scholar 

  • Baez JL, Bolivar F, Gosset G (2001) Determination of 3-deoxy-D-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system. Biotechnol Bioeng 73:530–535

    Article  PubMed  CAS  Google Scholar 

  • Báez-Viveros JL, Flores N, Juárez K, Castillo-España P, Bolívar F, Gosset G (2007) Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microb Cell Factories 6:28

    Article  CAS  Google Scholar 

  • Bai Y, Yin H, Bi H, Zhuang Y, Liu T, Ma Y (2016) De novo biosynthesis of gastrodin in Escherichia coli. Metab Eng 35:138–147

    Article  PubMed  CAS  Google Scholar 

  • Barker JL, Frost JW (2001) Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76:376–390

    Article  PubMed  CAS  Google Scholar 

  • Bilal M, Guo S, Iqbal HMN, Hu H, Wang W, Zhang X (2017) Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol 33(10):191

    Article  PubMed  CAS  Google Scholar 

  • Bilal M, Yue S, Hu H, Wang W, Zhang X (2018a) Systematically engineering Escherichia coli for enhanced shikimate biosynthesis co-utilizing glycerol and glucose. Biofuels Bioprod Biorefin 12(3):348–361

    Article  CAS  Google Scholar 

  • Bilal M, Yue S, Hu H, Wang W, Zhang X (2018b) Adsorption/desorption characteristics, separation and purification of phenazine-1-carboxylic acid from fermentation extract by macroporous adsorbing resins. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5673

  • Blanco B, Prado V, Lence E, Otero JM, Garcia-Doval C, van Raaij MJ, Llamas-Saiz AL, Lamb H, Hawkins AR, Gonzalez-Bello C (2013) Mycobacterium tuberculosis shikimate kinase inhibitors: design and simulation studies of the catalytic turnover. J Am Chem Soc 135(33):12366–12376

    Article  PubMed  CAS  Google Scholar 

  • Bochkov DV, Sysolyatin SV, Kalashnikov AI, Surmacheva IA (2012) Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol 5:5–17

    Article  PubMed  Google Scholar 

  • Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3(4):289–300

    Article  PubMed  CAS  Google Scholar 

  • Breitenbach M, Rinnerthaler M, Hartl J, Stincone A, Vowinckel J, Breitenbach-Koller H, Ralser M (2014) Mitochondria in ageing: there is metabolism beyond the ROS. FEMS Yeast Res 14(1):198–212

    Article  PubMed  CAS  Google Scholar 

  • Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19(3):808–814

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Dou J, Tang S, Yang Y, Wang H, Fang H, Zhou C (2012) Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli. Bioresour Technol 119:141–147

    Article  PubMed  CAS  Google Scholar 

  • Chen YY, Shen HJ, Cui YY, Chen SG, Weng ZM, Zhao M, Liu JZ (2013) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biol 13:6

    Article  CAS  Google Scholar 

  • Chen X, Li M, Zhou L, Shen W, Algasan G, Fan Y, Wang Z (2014) Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Bioresour Technol 166:64–71

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shen X, Peng H, Hu H, Wang W, Zhang X (2015) Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom Data 4:33–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang C-J, Chen PT, Chao YP (2008) Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnol Bioeng 101:985–995

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oats JE, Lugtenberg BJJ, Bloemburg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted in the growth medium. Mol Plant-Microbe Interact 14:969–979

    Article  PubMed  CAS  Google Scholar 

  • Chubukov V, Uhr M, Chat LL, Kleijn RJ, Jules M, Link H (2013) Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 9:709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui YY, Chen L, Zhang YY, Jian H, Liu JZ (2014) Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Factories 13:21

    Article  CAS  Google Scholar 

  • Daes J, Hua GK, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LE, Thomashow LS, Mavrodi DV, Hofte M (2011) Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101:996–1004

    Article  CAS  Google Scholar 

  • Dasgupta D, Kumar A, Mukhopadhyay B, Sengupta TK (2015) Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Appl Microbiol Biotechnol 99:8653–8665

    Article  PubMed  CAS  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. J Bacteriol 183:318–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Quiroz DC, Cardona-Felix CS, Viveros-Ceballos JL, Reyes-Gonzalez MA, Bolivar F, Ordonez M, Escalante A (2018) Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli. J Enzyme Inhib Med Chem 33(1):397–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dosselaere F, Vanderleyden J (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131

    Article  PubMed  CAS  Google Scholar 

  • Du X, Li Y, Zhou W, Zhou Q, Liu H, Xu Y (2013) Phenazine-1-carboxylic acid production in a chromosomally non-scar triple-deleted mutant Pseudomonas aeruginosa using statistical experimental designs to optimize yield. Appl Microbiol Biotechnol 97:7767–7778

    Article  PubMed  CAS  Google Scholar 

  • Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Factories 9:21

    Article  CAS  Google Scholar 

  • Estevez AM, Estevez RJ (2012) A short overview on the medicinal chemistry of (-)-shikimic acid. Mini Rev Med Chem 12(14):1443–1454

    Article  PubMed  CAS  Google Scholar 

  • Eudes A, Berthomieu R, Hao Z, Zhao N, Benites VT, Baidoo EEK, Loque D (2018) Production of muconic acid in plants. Metab Eng 46:13–19

    Article  PubMed  CAS  Google Scholar 

  • Farrell N, Roberts JD, Hacker MP (1991) Shikimic acid complexes of platinum. Preparation, reactivity, and antitumor activity of (R,R-1,2-diaminocyclohexane) bis(shikimato) platinum(II). Evidence for a novel rearrangement involving platinum-carbon bond formation. J Inorg Biochem 42(4):237–246

    Article  PubMed  CAS  Google Scholar 

  • Flores S, Gosset G, Flores N, de Graaf AA, Bolívar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy. Metab Eng 4:124–137

    Article  PubMed  CAS  Google Scholar 

  • Friehs K (2004) Plasmid copy number and plasmid stability. In: Scheper TH (ed) New trends and developments in biochemical engineering. Springer, Berlin, pp 47–82

    Chapter  Google Scholar 

  • Gao M, Cao M, Suastegui M, Walker JA, Rodriguez-Quiroz N, Wu Y (2017) Innovating a nonconventional yeast platform for producing shikimate as the building block of high-value aromatics. ACS Synth Biol 6:29–38

    Article  PubMed  CAS  Google Scholar 

  • Geiger A, Keller-Schierlein W, Brandl M, Zahner H (1988) Metabolites of microorganisms. Phenazines from Streptomyces antibioticus, strain Tu 2706. J Antibiot (Tokyo) 41:1542–1551

    Article  CAS  Google Scholar 

  • Ghosh S, Chisti Y, Banerjee UC (2012) Production of shikimic acid. Biotechnol Adv 30:1425–1431

    Article  PubMed  CAS  Google Scholar 

  • Gorantla JN, Kumar SN, Nisha GV, Sumandu AS, Dileep C, Sudaresan A, Kumar MM, Lankalapalli RS, Kumar BS (2014) Purification and characterization of antifungal phenazines from a fluorescent Pseudomonas strain FPO4 against medically important fungi. J Mycol Med 24:185–192

    Article  PubMed  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  PubMed  CAS  Google Scholar 

  • Gu P, Su T, Wang Q, Liang Q, Qi Q (2016) Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli. Sci Rep 6:29745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu P, Fan X, Liang Q, Qi Q, Li Q (2017) Novel technologies combined with traditional metabolic engineering strategies facilitate the construction of shikimate-producing Escherichia coli. Microb Cell Factories 16(1):167

    Article  Google Scholar 

  • Guo J, Frost JW (2004) Synthesis of aminoshikimic acid. Org Lett 6(10):1585–1588

    Article  PubMed  CAS  Google Scholar 

  • Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 183:6384–6393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Ann Rev Plant Physiol Plant Mol Biol 50(1):473–503

    Article  CAS  Google Scholar 

  • Horimoto T, Kawaoka Y (2001) Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev 14(1):129–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu H, Li Y, Liu L, Zhao J, Wang W, Zhang X (2017) Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 101:6607–6613

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Xiu Q, Sun J, Hong E (2002) Anti-platelet and anti-thrombotic effects of triacetylshikimic acid in rats. J Cardiovasc Pharmacol 39(2):262–270

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Chen M, Wang W, Hu H, Peng H, Xu Y, Zhang X (2011) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Eur J Appl Microbiol Biotechnol 89(1):169–177

    Article  CAS  Google Scholar 

  • Ibeh CC (2011) Thermoplastic materials: properties, manufacturing methods, and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Iomantas YAV, Abalakina EG, Polanuer BM, Yampolskaya TA, Bachina TA, Kozlov YI (2002) Method for producing shikimic acid, US

  • Iyer S, Pejakala V, Karabasanagouda V, Wagle S, Balaya L, Kanaka M, Hiremath M (2007) Method for obtaining shikimic acid, wo

  • Jasim B, Anisha C, Rohini S, Kurian JM, Jyothis M, Radhakrishnan EK (2014) Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol 30:1649–1654

    Article  PubMed  CAS  Google Scholar 

  • Jazmin LJ, Xu Y, Cheah YE, Adebiyi AO, Johnson CH, Young JD (2017) Isotopically nonstationary 13C flux analysis of cyanobacterial isobutyraldehyde production. Metab Eng 42:9–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang M, Zhang H (2016) Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli. Curr Opin Biotechnol 42:1–6

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Zhou L, Jiang H, Sun S, Fang Y, Liu J, Zhang X, He YW (2015) Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production. Metab Eng 32:30–38

    Article  PubMed  CAS  Google Scholar 

  • Jin XJ, Peng HS, Hu HB, Huang XQ, Wang W, Zhang XH (2016) iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3. Sci Rep 6:27393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson L, Liden G (2006) Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions. J Biotechnol 126(4):528–545

    Article  PubMed  CAS  Google Scholar 

  • Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Liden G (2005) Shikimic acid production by a modified strain of E. coli (W3110 Shik 1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 92:541–552

    Article  PubMed  CAS  Google Scholar 

  • Jossek R, Bongaerts J, Sprenger GA (2001) Characterization of a new feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol Lett 202(1):145–148

    PubMed  CAS  Google Scholar 

  • Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, Wilson R (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52(5):385–387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martinez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muniz-Rascado L, Ong Q, Paley S, Schroder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41:D605–D612

    Article  PubMed  CAS  Google Scholar 

  • Khamduang M, Packdibamrung K, Chutmanop J, Chisti Y, Srinophakun P (2009) Production of L-phenylalanine from glycerol by a recombinant Escherichia coli. J Ind Microbiol Biotechnol 36(10):1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Namgoong S, Kwak JH, Lee SY, Lee HS (2000) Effects of tktA, aroF FBR, and aroL expression in the tryptophan-producing Escherichia coli. J Microbiol Biotechnol 10:789–796

    CAS  Google Scholar 

  • Knaggs AR (2003) The biosynthesis of shikimate metabolites. Nat Prod Rep 20(1):119–136

    Article  PubMed  CAS  Google Scholar 

  • Knop DR, Draths KM, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW (2001) Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 123(42):10173–10182

    Article  PubMed  CAS  Google Scholar 

  • Kogure T, Kubota T, Suda M, Hiraga K, Inui M (2016) Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng 38:204–216

    Article  PubMed  CAS  Google Scholar 

  • Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5(4):277–283

    Article  PubMed  CAS  Google Scholar 

  • Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1685

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Hung WP, Tsai SH (2017) Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol. World J Microbiol Biotechnol 33:25

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jiang H, Xu Y, Zhang X (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77:1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Li PP, Liu YJ, Liu SJ (2009) Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum. Microbiology 155:3382–3391

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ji X, Kan S, Qiao H, Jian M, Lu D, Wang J, Huang H, Jia H, Ouyuang P, Ying H (2010) Past, present and future industrial biotechnology in China. In: Tsao GT, Ouyang P, Berlin CJ (eds) Biotechnol China II Chem Energy Environ. Springer, Heidelberg, pp 1–42

    Google Scholar 

  • Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MAG (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77(10):3451–3460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu HM, Zhang XH, Huang XQ, Cao CX, Xu YQ (2008a) Rapid quantitative analysis of phenazine-1-carboxylic acid and 2-hydroxyphenazine from fermentation culture of Pseudomonas chlororaphis GP72 by capillary zone electrophoresis. Talanta 76(2):276–281

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Li PP, Zhao KX, Wang BJ, Jiang CY, Drake HL, Liu SJ (2008b) Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features. Appl Environ Microbiol 74:5497–5503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JZ, Huang MT, Cui YY, Chen YY (2012) A series of expression plasmids for chromosomal integration and evolution. Chinese patent 201210060042.5

  • Liu K, Hu H, Wang W, Zhang X (2016a) Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-hydroxyphenazine. Microb Cell Factories 15:131

    Article  CAS  Google Scholar 

  • Liu X, Lin J, Hu H, Zhou B, Zhu B (2016b) Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields. Enzym Microb Technol 82:96–104

    Article  CAS  Google Scholar 

  • Liu Y, Wang Z, Bilal M, Hu H, Wang W, Huang X, Peng H, Zhang X (2018) Enhanced fluorescent siderophore biosynthesis and loss of phenazine-1-carboxamide in phenotypic variant of Pseudomonas chlororaphis HT66. Front Microbiol 9:759

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo HJ, Chen CY, Zheng WL, Yeh SM, Yan TH (2012) A C2-symmetric pool based flexible strategy: an enantioconvergent synthesis of (+)-valiolamine and (+)-valienamine. Eur J Org Chem 2012(14):2780–2785

    Article  CAS  Google Scholar 

  • Lutke-Eversloh T, Stephanopoulos G (2007) L-tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol 75(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Lütke-Eversloh T, Santos CNS, Stephanopoulos G (2007) Perspectives of biotechnological production of L-tyrosine and its applications. Appl Microbiol Biotechnol 77:751–762

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Sun JN, Xu QP, Guo YJ (2000) Inhibitory effects of shikimic acid on platelet aggragation and blood coagulation. Acta Pharmacol Sin 5(5):600–612

    Google Scholar 

  • Martinez JA, Bolivar F, Escalante A (2015) Shikimic acid production in Escherichia coli: from classical metabolic engineering strategies to omics applied to improve its production. Front Bioeng Biotechnol 3:45

    Google Scholar 

  • McAtee AG, Jazminm LJ, Young JD (2015) Application of isotope labeling experiments and 13C flux analysis to enable rational pathway engineering. Curr Opin Biotechnol 36:50–56

    Article  PubMed  CAS  Google Scholar 

  • Momen AR, Hoshino T (2000) Biosynthesis of violacein: intact incorporation of the tryptophan molecule on the oxindole side, with intramolecular rearrangement of the indole ring on the 5-hydroxyindole side. Biosci Biotechnol Biochem 64(3):539–549

    Article  PubMed  CAS  Google Scholar 

  • Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267

    Article  PubMed  CAS  Google Scholar 

  • Park GK, Lim JH, Kim SD, Shim SH (2012) Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. J Microbiol Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Ouyang Y, Bilal M, Wang W, Hu H, Zhang X (2018) Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66. Microb Cell Factories 17:9

    Article  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puopolo G, Masi M, Raio A, Andolfi A, Zoina A, Cimmino A, Evidente A (2013) Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. Nat Prod Res 27:956–966

    Article  PubMed  CAS  Google Scholar 

  • Ran N, Frost JW (2007) Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate aldolase to replace 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. J Am Chem Soc 129(19):6130–6139

    Article  PubMed  CAS  Google Scholar 

  • Rawat G, Tripathi P, Saxena RK (2013) Expanding horizons of shikimic acid. Recent progresses in production and its endless frontiers in application and market trends. Appl Microbiol Biotechnol 97:4277–4287

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, Korneli C, de Souza Lima AO, Porto LM, Sprenger GA (2013) Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng 20:29–41

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Martínez JA, Báez-Viveros JL, Flores N, Hernández-Chávez G, Ramírez OT, Gosset G, Bolivar F (2013) Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb Cell Factories 12:86

    Article  CAS  Google Scholar 

  • Rodriguez A, Martinez JA, Millard P, Gosset G, Portais JC, Letisse F, Bolivar F (2017) Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain. Biotechnol Bioeng 114:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Shanmugaiah V, Mathivanan N, Varghes B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711

    Article  PubMed  CAS  Google Scholar 

  • Shirai M, Miyata R, Sasaki S, Sakamoto K, Yahanda S, Shibayama K, Yonehara T, Ogawa K (2001) Microorganism belonging to the genus citrobacter and process for producing shikimic acid. European Patent, 1092766

  • Sprenger G (2007a) Aromatic amino acids. In Amin Acid Biosynth - Pathways, Regul Metab Eng. Wendisch VF (ed) Berlin, Heidelberg: Springer, p 418 [Microbiology Monographs, vol. 5]

  • Sprenger GA (2007b) From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749

    Article  PubMed  CAS  Google Scholar 

  • St-Onge R, Gadkar VJ, Arseneault T, Goyer C, Filion M (2011) The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiol Ecol 75:173–183

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Xiang H, Sun Y, Qiu L, Chen D, Deng C, Chen W (2009) Monopalmityloxy shikimic acid: enzymatic synthesis and anticoagulation activity evaluation. Appl Biochem Biotechnol 158(2):408–415

    Article  PubMed  CAS  Google Scholar 

  • Tissier A, Ziegler J, Vogt T (2014) Specialized plant metabolites: diversity and biosynthesis. Wiley-VCH Verlag GmbH & Co KGaA. pp 14–37. https://doi.org/10.1002/9783527686063.ch2

  • Treibmann S, Hellwig A, Hellwig M, Henle T (2017) Lysine-derived protein-bound Heyns compounds in bakery products. J Agric Food Chem 65(48):10562–10570

    Article  PubMed  CAS  Google Scholar 

  • Tyo KE, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–765

    Article  PubMed  CAS  Google Scholar 

  • Wang MW, Hao X, Chen K (2007) Biological screening of natural products and drug innovation in China. Philos Trans Biol Sci 362(1482):1093–1105

    Article  CAS  Google Scholar 

  • Wang D, Yu JM, Dorosky RJ, Pierson LS 3rd, Pierson EA (2016) The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30–84. PLoS One 11(1):e0148003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Bilal M, Hu H, Wang W, Zhang X (2018a) 4-Hydroxybenzoic acid—a versatile platform intermediate for value-added compounds. Appl Microbiol Biotechnol 102(8):3561–3571

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Bilal M, Zong Y, Hu H, Wang W, Zhang X (2018b) Development of a plasmid-free biosynthetic pathway for enhanced muconic acid production in Pseudomonas chlororaphis HT66. ACS Synth Biol 7(4):1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Weaver LM, Herrmann KM (1990) Cloning of an aroF allele encoding a tyrosine insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. J Bacteriol 172:6581–6584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Widmer N, Meylan P, Ivanyuk A, Aouri M, Decosterd LA, Buclin T (2010) Oseltamivir in seasonal, avian H5N1 and pandemic 2009 A/H1N1 influenza: pharmacokinetic and pharmacodynamic characteristics. Clin Pharmacokinet 49(11):741–765

    Article  PubMed  CAS  Google Scholar 

  • Wojtowicz W, Piotr M (2016) Metabolomics and fluxomics in biotechnology: current trends. J Biotechnol Comput Biol Bionanotechnol 97(2):137–144

    CAS  Google Scholar 

  • Xing J, Sun J, You H, Lv J, Sun J, Dong Y (2012) Anti-inflammatory effect of 3,4-oxo-isopropylidene-shikimic acid on acetic acid-induced colitis in rats. Inflammation 35(6):1872–1879

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Geng B, Zhu C, Li H, He B, Guo H (2018) Fermentation performance optimization in an ectopic fermentation system. Bioresour Technol 260:329–337

    Article  PubMed  CAS  Google Scholar 

  • Yao R, Xiong D, Hu H, Wakayama M, Yu W, Zhang X, Shimizu K (2016) Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and 13C metabolic flux analysis. Biotechnol Biofuels 9:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao R, Pan K, Peng H, Feng L, Hu H, Zhang X (2018) Engineering and systems-level analysis of Pseudomonas chlororaphis for production of phenazine-1-carboxamide using glycerol as the cost-effective carbon source. Biotechnol Biofuels 11:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi J, Li K, Draths KM, Frost JW (2002) Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol Prog 18:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Yi J, Draths KM, Li K, Frost JW (2003) Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog 19:1450–1459

    Article  PubMed  CAS  Google Scholar 

  • Yue SJ, Bilal M, Guo SQ, Hu HB, Wang W, Zhang XH (2018) Enhanced trans-2, 3-dihydro-3-hydroxyanthranilic acid production by pH control and glycerol feeding strategies in engineered Pseudomonas chlororaphis GP72. J Chem Technol Biotechnol 93(6):1618–1626

    Article  CAS  Google Scholar 

  • Zhang C, Kang Z, Zhang J, Du G, Chen J, Yu X (2014) Construction and application of novel feedback-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis. FEMS Microbiol Lett 353(1):11–18

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278

    Article  CAS  Google Scholar 

  • Zhao Q, Bilal M, Yue S, Hu H, Wang W, Zhang X (2017a) Identification of biphenyl 2, 3-dioxygenase and its catabolic role for phenazine degradation in Sphingobium yanoikuyae B1. J Environ Manag 204:494–501

    Article  CAS  Google Scholar 

  • Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X (2017b) Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci Total Environ 576:646–659

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31670033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Wang, S., Iqbal, H.M.N. et al. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments. Appl Microbiol Biotechnol 102, 7759–7773 (2018). https://doi.org/10.1007/s00253-018-9222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9222-z

Keywords

Navigation