Skip to main content
Log in

Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway

  • Metabolic Engineering and Synthetic Biology - Mini Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The shikimate pathway is indispensable for the biosynthesis of natural products with aromatic moieties. These products have wide current and potential applications in food, cosmetics and medicine, and consequently have great commercial value. However, compounds extracted from various plants or synthesized from petrochemicals no longer satisfy the requirements of contemporary industries. As a result, an increasing number of studies has focused on this pathway to enable the biotechnological manufacture of natural products, especially in E. coli. Furthermore, the development of synthetic biology, systems metabolic engineering and high flux screening techniques has also contributed to improving the biosynthesis of high-value compounds based on the shikimate pathway. Here, we review approaches based on a combination of traditional and new metabolic engineering strategies to increase the metabolic flux of the shikimate pathway. In addition, applications of this optimized pathway to produce aromatic amino acids and a range of natural products is also elaborated. Finally, this review sums up the opportunities and challenges facing this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahn J, Chung BKS, Lee D, Park M, Karimi IA, Jung J, Lee H (2011) NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources. FEMS Microbiol Lett 324(1):10–16. https://doi.org/10.1111/j.1574-6968.2011.02378.x

    Article  CAS  PubMed  Google Scholar 

  2. Andrighetti-Fröhner CR, Antonio R, Creczynski-Pasa t, Barardi CRM (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by chromobacterium violaceum. Mem Inst Oswaldo Cruz 98(6):843–848. https://doi.org/10.1590/S0074-02762003000600023

    Article  PubMed  Google Scholar 

  3. Appeldoorn CCM, Bonnefoy A, Lutters BCH, Daenens K, van Berkel TJC, Hoylaerts MF, Biessen EAL (2005) Gallic acid antagonizes P-selectin–mediated platelet-leukocyte interactions. Circulation 111(1):106–112. https://doi.org/10.1161/01.CIR.0000151307.10576.02

    Article  CAS  PubMed  Google Scholar 

  4. Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernandez-Chavez G, Baez-Viveros JL, Martinez A, Bolivar F, Gosset G (2009) Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 8:19. https://doi.org/10.1186/1475-2859-8-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Becker MH, Brucker RM, Schwantes CR, Harris RN, Minbiole KPC (2009) The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microb 75(21):6635–6638. https://doi.org/10.1128/AEM.01294-09

    Article  CAS  Google Scholar 

  6. Bilal M, Wang S, Iqbal HMN, Zhao Y, Hu H, Wang W, Zhang X (2018) Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments. Appl Microbiol Biotechnol 102(18):7759–7773. https://doi.org/10.1007/s00253-018-9222-z

    Article  CAS  PubMed  Google Scholar 

  7. Bromberg N, Durán N (2001) Violacein transformation by peroxidases and oxidases: implications on its biological properties. J Mol Catal B Enzym 11(4):463–467. https://doi.org/10.1016/S1381-1177(00)00171-5

    Article  CAS  Google Scholar 

  8. Cha MN, Kim HJ, Kim BG, Ahn J (2014) Synthesis of chlorogenic acid and p-coumaroyl shikimates from glucose using engineered Escherichia coli. J Microbiol Biotechnol 24(8):1109–1117. https://doi.org/10.4014/jmb.1403.03033

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Zeng A (2017) Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl Microbiol Biotechnol 101(2):559–568. https://doi.org/10.1007/s00253-016-7772-5

    Article  CAS  PubMed  Google Scholar 

  10. Chen Z, Shen X, Wang J, Wang J, Yuan Q, Yan Y (2017) Rational engineering of P-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnol Bioeng 114(11):2571–2580. https://doi.org/10.1002/bit.26364

    Article  CAS  PubMed  Google Scholar 

  11. Cheol Kim S, Eun Min B, Gyu Hwang H, Woo Seo S, Jung GY (2015) Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli. Sci Rep. https://doi.org/10.1038/srep13853

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cui Y, Ling C, Zhang Y, Huang J, Liu J (2014) Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Fact 13(1):21. https://doi.org/10.1186/1475-2859-13-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Das A, Tyagi N, Verma A, Akhtar S, Mukherjee KJ (2018) Metabolic engineering of Escherichia coli W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol. Prep Biochem Biotechnol 48(8):671–682. https://doi.org/10.1080/10826068.2018.1487851

    Article  CAS  PubMed  Google Scholar 

  14. Díaz-Quiroz DC, Cardona-Félix CS, Viveros-Ceballos JL, Reyes-González MA, Bolívar F, Ordoñez M, Escalante A (2018) Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli. J Enzyme Inhib Med Chem 33(1):397–404. https://doi.org/10.1080/14756366.2017.1422125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding D, Liu Y, Xu Y, Zheng P, Li H, Zhang D, Sun J (2016) Improving the production of L-phenylalanine by identifying key enzymes through multi-enzyme reaction system in vitro. Sci Rep. https://doi.org/10.1038/srep32208

    Article  PubMed  PubMed Central  Google Scholar 

  16. Durán N, Menck CF (2001) Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit Rev Microbiol 27(3):201–222. https://doi.org/10.1080/20014091096747

    Article  PubMed  Google Scholar 

  17. Durán N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D (2007) Violacein: properties and biological activities. Biotechnol Appl Biochem 48(3):127. https://doi.org/10.1042/BA20070115

    Article  CAS  PubMed  Google Scholar 

  18. Fan C, Davison PA, Habgood R, Zeng H, Decker CM, Gesell SM, Lueangwattanapong K, Townley HE, Yang A, Thompson IP, Ye H, Cui Z, Schmidt F, Hunter CN, Huang WE (2020) Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proc Natl Acad Sci USA 117(12):6752–6761. https://doi.org/10.1073/pnas.1918859117

    Article  CAS  PubMed  Google Scholar 

  19. Fang M, Zhang C, Yang S, Cui J, Jiang P, Lou K, Wachi M, Xing X (2015) High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb Cell Fact. https://doi.org/10.1186/s12934-015-0192-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Floras N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14(5):620–623. https://doi.org/10.1038/nbt0596-620

    Article  Google Scholar 

  21. Fordjour E, Adipah FK, Zhou S, Du G, Zhou J (2019) Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1122-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. García S, Flores N, De Anda R, Hernández G, Gosset G, Bolívar F, Escalante A (2017) The role of the ydiB Gene, which encodes Quinate/Shikimate dehydrogenase, in the production of Quinic, Dehydroshikimic and Shikimic acids in a PTS- strain of Escherichia coli. J Mol Microb Biotechnol 27(1):11–21. https://doi.org/10.1159/000450611

    Article  CAS  Google Scholar 

  23. Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. MIcrob Cell Fact 4(1):14. https://doi.org/10.1186/1475-2859-4-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gottlieb K, Albermann C, Sprenger GA (2014) Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb Cell Fact 13(1):96. https://doi.org/10.1186/s12934-014-0096-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu P, Fan X, Liang Q, Qi Q, Li Q (2017) Novel technologies combined with traditional metabolic engineering strategies facilitate the construction of shikimate-producing Escherichia coli. Microb Cell Fact. https://doi.org/10.1186/s12934-017-0773-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gu P, Kang J, Yang F, Wang Q, Liang Q, Qi Q (2013) The improved l-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway. Appl Microbiol Biotechnol 97(9):4121–4127. https://doi.org/10.1007/s00253-012-4665-0

    Article  CAS  PubMed  Google Scholar 

  27. Gu P, Yang F, Kang J, Wang Q, Qi Q (2012) One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microb Cell Fact 11(1):30. https://doi.org/10.1186/1475-2859-11-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gu P, Yang F, Li F, Liang Q, Qi Q (2013) Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol 97(15):6677–6683. https://doi.org/10.1007/s00253-013-4988-5

    Article  CAS  PubMed  Google Scholar 

  29. Gupta A, Reizman IMB, Reisch CR, Prather KLJ (2017) Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol 35(3):273–279. https://doi.org/10.1038/nbt.3796

    Article  CAS  PubMed  Google Scholar 

  30. Hideo Kawaguchi HMSN, Chiaki Ogino AAK (2019) Enhanced phenyllactic acid production in Escherichia coli via oxygen limitation and shikimate pathway gene expression. Biotechnol J. https://doi.org/10.1002/biot.201800478

    Article  PubMed  Google Scholar 

  31. Imamoto GBLS (1984) Transcription of the trpR gene of Escherichia coil: an autogeneously regulated system studied by direct measurements of mRNA levels in vivo. Mol Gen Genet 193:244–250. https://doi.org/10.1007/bf00330675

    Article  PubMed  Google Scholar 

  32. Jiang M, Zhang H (2016) Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli. Curr Opin Biotech 42:1–6. https://doi.org/10.1016/j.copbio.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  33. Jiang P, Wang H, Zhang C, Lou K, Xing X (2010) Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl Microbiol Biotechnol 86(4):1077–1088. https://doi.org/10.1007/s00253-009-2375-z

    Article  CAS  PubMed  Google Scholar 

  34. Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G, Department OCE, Lund U, Institutionen FK, Lunds U (2005) Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 92(5):541. https://doi.org/10.1002/bit.20546

    Article  CAS  PubMed  Google Scholar 

  35. Kawaguchi H, Katsuyama Y, Danyao D, Kahar P, Nakamura-Tsuruta S, Teramura H, Wakai K, Yoshihara K, Minami H, Ogino C, Ohnishi Y, Kondo A (2017) Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Appl Microbiol Biotechnol 101(13):5279–5290. https://doi.org/10.1007/s00253-017-8270-0

    Article  CAS  PubMed  Google Scholar 

  36. Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5(4):277–283. https://doi.org/10.1016/j.ymben.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  37. Lee D (2008) Exploring the effects of carbon sources on the metabolic capacity for exploring the effects of carbon sources on the metabolic capacity for predictions. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.0700.705

    Article  PubMed  Google Scholar 

  38. Lee M, Hung W, Tsai S (2017) Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-016-2192-3

    Article  PubMed  Google Scholar 

  39. Li Q, Wu H, Li Z, Ye Q (2016) Enhanced succinate production from glycerol by engineered Escherichia coli strains. Bioresour Technol 218:217–223. https://doi.org/10.1016/j.biortech.2016.06.090

    Article  CAS  PubMed  Google Scholar 

  40. Lin Y, Sun X, Yuan Q, Yan Y (2014) Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab Eng 23:62–69. https://doi.org/10.1016/j.ymben.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  41. Liu C, Men X, Chen H, Li M, Ding Z, Chen G, Wang F, Liu H, Wang Q, Zhu Y, Zhang H, Xian M (2018) A systematic optimization of styrene biosynthesis in Escherichia coli BL21(DE3). Biotechnol Biofuels. https://doi.org/10.1186/s13068-018-1017-z

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu L, Chen S, Wu J (2017) Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during l-tryptophan production in Escherichia coli. J Ind Microbiol Biotechnol 44(10):1385–1395. https://doi.org/10.1007/s10295-017-1959-3

    Article  CAS  PubMed  Google Scholar 

  43. Liu Q, Cheng Y, Xie X, Xu Q, Chen N (2012) Modification of tryptophan transport system and its impact on production of l-tryptophan in Escherichia coli. Bioresour Technol 114:549–554. https://doi.org/10.1016/j.biortech.2012.02.088

    Article  CAS  PubMed  Google Scholar 

  44. Liu S, Xiao M, Zhang L, Xu J, Ding Z, Gu Z, Shi G (2013) Production of l-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochem 48(3):413–419. https://doi.org/10.1016/j.procbio.2013.02.016

    Article  CAS  Google Scholar 

  45. Liu SP, Liu RX, Xiao MR, Zhang L, Ding ZY, Gu ZH, Shi GY (2014) A systems level engineered E. coli capable of efficiently producing L-phenylalanine. Process Biochem 49(5):751–757. https://doi.org/10.1016/j.procbio.2014.01.001

    Article  CAS  Google Scholar 

  46. Liu X, Lin J, Hu H, Zhou B, Zhu B (2014) Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol. World J Microbiol Biotechnol 30(9):2543–2550. https://doi.org/10.1007/s11274-014-1679-z

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Lin J, Hu H, Zhou B, Zhu B (2016) Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli. Chin J Nat Med 14(4):286–293. https://doi.org/10.1016/S1875-5364(16)30029-2

    Article  PubMed  Google Scholar 

  48. Liu X, Lin J, Hu H, Zhou B, Zhu B (2016) Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields. Enzyme Microb Technol 82:96–104. https://doi.org/10.1016/j.enzmictec.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Xu Y, Ding D, Wen J, Zhu B, Zhang D (2018) Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnol 18(1):5–12. https://doi.org/10.1186/s12896-018-0418-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo W, Huang J, Zhu X, Huang L, Cai J, Xu Z (2013) Enhanced production of l-tryptophan with glucose feeding and surfactant addition and related metabolic flux redistribution in the recombinant Escherichia coli. Food Sci Biotechnol 22(1):207–214. https://doi.org/10.1007/s10068-013-0029-5

    Article  CAS  Google Scholar 

  51. Luo Y, Zhang T, Wu H (2014) The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 32(5):905–919. https://doi.org/10.1016/j.biotechadv.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  52. Lütke-Eversloh T, Stephanopoulos G (2008) Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metab Eng 10(2):69–77. https://doi.org/10.1016/j.ymben.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  53. Martínez JA, Rodriguez A, Moreno F, Flores N, Lara AR, Ramírez OT, Gosset G, Bolivar F (2018) Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production. BMC Syst Biol. https://doi.org/10.1186/s12918-018-0632-4

    Article  PubMed  PubMed Central  Google Scholar 

  54. Masuo S, Kobayashi Y, Oinuma K, Takaya N (2016) Alternative fermentation pathway of cinnamic acid production via phenyllactic acid. Appl Microbiol Biotechnol 100(20):8701–8709. https://doi.org/10.1007/s00253-016-7623-4

    Article  CAS  PubMed  Google Scholar 

  55. Muir RM, Ibáñez AM, Uratsu SL, Ingham ES, Leslie CA, McGranahan GH, Batra N, Goyal S, Joseph J, Jemmis ED, Dandekar AM (2011) Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Mol Biol 75(6):555–565. https://doi.org/10.1007/s11103-011-9739-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noda S, Shirai T, Oyama S, Kondo A (2015) Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metab Eng 33:119–129. https://doi.org/10.1016/j.ymben.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  57. Pontrelli S, Chiu T, Lan EI, Chen FYH, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46. https://doi.org/10.1016/j.ymben.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  58. Qian S, Li Y, Cirino PC (2019) Biosensor-guided improvements in salicylate production by recombinant Escherichia coli. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1069-1

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ranjan Patnaik RGSA (1995) Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. Biotechnol Bioeng 46(4):361–370. https://doi.org/10.1002/bit.260460409

    Article  Google Scholar 

  60. Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, Korneli C, de Souza Lima AO, Porto LM, Sprenger GA, Wittmann C (2013) Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng 20:29–41. https://doi.org/10.1016/j.ymben.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F (2014) Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 13(1):126. https://doi.org/10.1186/s12934-014-0126-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Santos CNS, Xiao W, Stephanopoulos G (2012) Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc Natl Acad Sci 109(34):13538–13543. https://doi.org/10.1073/pnas.1206346109

    Article  PubMed  Google Scholar 

  63. Wang J, Cheng L, Wang J, Liu Q, Shen T, Chen N (2013) Genetic engineering of Escherichia coli to enhance production of l-tryptophan. Appl Microbiol Biotechnol 97(17):7587–7596. https://doi.org/10.1007/s00253-013-5026-3

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Shen X, Rey J, Yuan Q, Yan Y (2018) Recent advances in microbial production of aromatic natural products and their derivatives. Appl Microbiol Biotechnol 102(1):47–61. https://doi.org/10.1007/s00253-017-8599-4

    Article  CAS  PubMed  Google Scholar 

  65. Wang J, Shen X, Yuan Q, Yan Y (2018) Microbial synthesis of pyrogallol using genetically engineered Escherichia coli. Metab Eng 45:134–141. https://doi.org/10.1016/j.ymben.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  66. Wolfsberg E, Long CP, Antoniewicz MR (2018) Metabolism in dense microbial colonies: 13C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metab Eng 49:242–247. https://doi.org/10.1016/j.ymben.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  67. Xiaolin Shen JW, Qipeng Yuan YY (2017) High-level de novo biosynthesis of arbutin in engineered Escherichia coli. Metab Eng. https://doi.org/10.1016/j.ymben.2017.06.001

    Article  PubMed  Google Scholar 

  68. Xu Q, Bai F, Chen N, Bai G (2017) Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production. PLoS ONE 12(6):e179240. https://doi.org/10.1371/journal.pone.0179240

    Article  CAS  Google Scholar 

  69. Yang J, Camakaris H, Pittard AJ (1993) Mutations in the tyrR gene of Escherichia coli which affect tyrR-mediated activation but not tyrR-mediated repression. J Biotechnol 175(19):6372–6375. https://doi.org/10.1128/jb.175.19.6372-6375.1993

    Article  CAS  Google Scholar 

  70. Yi J, Draths KM, Li K, Frost JW (2003) Altered Glucose Transport and Shikimate Pathway Product Yields in E. coli. Biotechnol Prog 19(5):1450–1459. https://doi.org/10.1021/bp0340584

    Article  CAS  PubMed  Google Scholar 

  71. Zhang J, Li X (2018) Novel strategy for phenyllactic acid biosynthesis from phenylalanine by whole cell recombinant Escherichia coli coexpressing l-phenylalanine oxidase and l-lactate dehydrogenase. Biotechnol Lett 40(1):165–171. https://doi.org/10.1007/s10529-017-2456-5

    Article  CAS  PubMed  Google Scholar 

  72. Zhou Y, Fang M, Li G, Zhang C, Xing X (2018) Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(s) involved in violacein biosynthesis. Appl Biochem Biotechnol 186(4):909–916. https://doi.org/10.1007/s12010-018-2787-2

    Article  CAS  PubMed  Google Scholar 

  73. Zhu S, Wu J, Du G, Zhou J, Chen J (2014) Efficient synthesis of eriodictyol from l-tyrosine in Escherichia coli. Appl Environ Microb 80(10):3072–3080. https://doi.org/10.1128/AEM.03986-13

    Article  CAS  Google Scholar 

  74. Zhucui Li YLYJ (2018) Exploiting high-resolution mass spectrometry for targeted metabolite quantification and 13C-labeling metabolism analysis. Microb Metab. https://doi.org/10.1007/978-1-4939-8757-3_9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0900302), the National Natural Science Foundation of China (21621004, 31900052), the Tianjin Science Fund for Distinguished Young Scholars (17JCJQJC45300), the Science and Technology Service Network (STS) Initiative of the Chinese Academy of Sciences (KFJ-STS-ZDTP-065), and he National Key R&D Program of China (2018YFA0901600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Chen or Dawei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, H., Ding, D. et al. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway. J Ind Microbiol Biotechnol 47, 525–535 (2020). https://doi.org/10.1007/s10295-020-02288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02288-2

Keywords

Navigation