Skip to main content
Log in

Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Poly(β-l-malic acid) is one natural biopolymer that has the outstanding features of biocompatibility, biodegradability, water solubility, and non-immunogenicity, and it is easily chemically modified. So poly(β-l-malic acid) (PMLA) and its derivatives may have a great potential application as a novel drug delivery system and in the production of advanced biomaterials which have attracted so much research attention. The fungi of Aureobasidium spp. have been discovered to be the most suitable candidates for PMLA production in large quantities which satisfy the demand of either research or industry. In this review, we will give an overall summary about the PMLA produced by Aureobasidium spp. based on related research in the last decades and the elaboration of this PMLA producer will also be accomplished. More importantly, the latest proceedings will be specified and some suggestions to the elucidation of a PMLA biosynthesis pathway which remains undefined up to date will be proposed. Finally, through this review, the further exploitation for the application of PMLA from Aureobasidium spp. can be emphasized and promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amartey S, Jeffries TW (1994) Comparison of corn steep liquor with other nutrients in the fermentation of D-xylose by Pichia stipitis CBS 6054. Biotechnol Lett 16:211–214

    Article  CAS  Google Scholar 

  • Brown SH, Bashkirova L, Berka R (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol 97:8903–8912

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Luo J, Zhao J, Qiao C, Ding L, Qi B, Su Y, Wan Y (2012) Intensification of β-poly(L-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. J Ind Microbiol Biotechnol 39:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Qi B, Zhao J (2013) Control strategy of pH, dissolved oxygen concentration and stirring speed for enhancing β-poly (malic acid) production by Aureobasidium pullulans ipe-1. J Chem Technol Biotech 88:808–817

    Article  CAS  Google Scholar 

  • Caruelle JP, Barritault D, Jeanbat-Mimaud V, Cammas-Marion S, Langlois V, Guerin P, Barbaud C (2000) Bioactive functionalized polymer of malic acid for bone repair and muscle regeneration. J Biomat Sci Polym Edition 11:979–991

    Article  Google Scholar 

  • Chen X, Xu G, Xu N (2013) Metabolic engineering of Torulopsis glabrata for malate production. Metab Eng 19:10–16

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Wang XX, Geng Q, Chi ZM (2013) Role of a GATA-type transcriptional repressor Sre1 in regulation of siderophore biosynthesis in the marine derived Aureobasidium pullulans HN6.2. Biomet 26:955–967

    Article  CAS  Google Scholar 

  • Chi Z, Wang XX, Ma ZC, Chi ZM (2012) The unique role of siderophore in marine-derived Aureobasidium pullulans HN6.2. Biomet 25:219–230

    Article  CAS  Google Scholar 

  • Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM (2016) Microbial biosynthesis and secretion of L-malic acid and its applications. Crit Rev Biotechnol 36(1):99–107

    Article  CAS  PubMed  Google Scholar 

  • Chi ZM, Wang F, Chi Z (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82:793–804

    Article  CAS  PubMed  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer H, Erdmann S, Holler E (1989) An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase α in vitro. Biochem 28:5219–5225

    Article  CAS  Google Scholar 

  • Fournié P, Domurado D, Guérin P, Braud C, Vert M, Madelmont JC (1990) In vivo fate of end-chain radiolabelled poly(β-malic acid), a water soluble biodegradable drug carrier. J Bioact Compat Polym 5:381–395

    Article  Google Scholar 

  • Fournié P, Domurado D, Guérin P, Braud C, Vert M, Pontikis R (1992) In vivo fate of repeat-unitradiolabelled poly(β-malic acid), a potential drug carrier. J Bioact Compat Polym 7:113–129

    Article  Google Scholar 

  • Gasslmaier B, Gasslmaier E (1997) Specificity and direction of depolymerization of poly (L-malate) catalysed by polymalatase from Physarum polycephalum. Eur J Biochem 250:308–314

    Article  CAS  PubMed  Google Scholar 

  • Giese H, Sondergaard TE, Sørensen JL (2013) The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fung Biol 117:814–821

    Article  CAS  Google Scholar 

  • Gödde C, Liebergesell M, Steinbüchel A (1999) Isolation of poly (L-L-malic acid)-degrading bacteria and purification and characterization of the PMA hydrolase from Comamonas acidovorans strain 7789. FEMS Microbiol Lett 173:365–372

    Article  PubMed  Google Scholar 

  • Goldberg I, Rokem JS, Pines O (2006) Organic acids: old metabolites, new themes. J Chem Technol Biotechnol 81:1601–1611

    Article  CAS  Google Scholar 

  • Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genom 15:549–550

    Article  Google Scholar 

  • Holler E, Angerer B, Achhammer G, Miller S, Windisch C (1992) Biological and biosynthetic properties of poly-L-malate. FEMS Microbiol Rev 103:109–118

    CAS  Google Scholar 

  • Huang ZW, Laurent V, Chetouania G, Ljubimova JY, Holler E, Benvegnua T, Loyer P, Sandrine Cammas-Marion S (2012) New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery. Intern J Pharma 423:84–92

    Article  CAS  Google Scholar 

  • Kajiyama T, Kobayashi H, Taguchi T, Saito H, Kamatsu Y, Kataoka K, Tanaka J (2004) Synthesis of activated poly(α,β-malic acid) using N-hydroxysuccinimide and its gelation with collagen as biomaterials. Materials Sci Eng C 24:815–819

    Article  Google Scholar 

  • Karl M, Holler E (1998) Multiple polypetides immunologically related to L-poly(L malate) hydrolase (polymalatase) in the plasmodium of the slime mold Physarum polycephalum. Eur J Biochem 251:405–412

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Nazir K, Wang ZP, Liu GL, Chi ZM (2014) Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotechnol 98:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Knuf C, Nookaew I, Brown SH (2013) Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Appl Environ Microbiol 79:6050–6058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korherr C, Roth R, Holler E (1995) Poly(L-L-malate) hydrolase from plasmodia of Physarum polycephalum. Can J Microbiol 41:192–199

    Article  CAS  Google Scholar 

  • Leathers TD, Manitchotpisit P (2013) Production of poly(β-L-malic acid) (PMA) from agricultural biomass substrates by Aureobasidium pullulans. Biotechnol Lett 35:83–89

    Article  CAS  PubMed  Google Scholar 

  • Lee BS, Holler E (1999) Effects of culture conditions on β-poly(L-malate) production by Physarum polycephalum. Appl Microbiol Biotechnol 51:647–652

    Article  CAS  Google Scholar 

  • Lee BS, Maurer T, Kalbitzer HR, Holler E (1999) β-Poly (L-malate) production by Physarum polycephalum. 13C Nuclear magnetic resonance studies. Appl Microbiol Biotechnol 52:415–420

    Article  CAS  Google Scholar 

  • Li Y, Chi Z, Wang GY, Wang ZP, Liu GL, Lee CF, Ma ZC, Chi ZM (2015) Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit Rev Microbiol 41:228–237

    Article  CAS  PubMed  Google Scholar 

  • Li BX, Zhang N, Peng Q, Yin T, Guan FF, Wang GL, Y L (2009) Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl Microbiol Biotechnol 84:293–300

    Article  CAS  PubMed  Google Scholar 

  • Liu SJ, Steinbüchel A (1996) Investigation of poly(β-L-malic acid) production by strains of Aureobasidium pullulans. Appl Microbiol Biotechnol 46:273–278

    Article  CAS  Google Scholar 

  • Liu SJ, Steinbüchel A (1997) Production of poly(malic acid) from different carbon sources and its regulation in Aureobasidium pullulans. Biotechnol Lett 19:11–14

    Article  Google Scholar 

  • Ma Y, Wang GY, Liu GL, Wang ZP, Chi ZM (2013) Overproduction of poly(β-malic acid) (PMA) from glucose by a novel Aureobasidium sp. P6 strain isolated from mangrove system. Appl Microbiol Biotechnol 97:8931–8939

    Article  CAS  PubMed  Google Scholar 

  • Ma ZC, Chi Z, Geng Q, Chi ZM (2012) Disruption of the pullulan synthetase gene in siderophore-producing Aureobasidium pullulans enhances siderophore production and simplifies siderophore extraction. Proc Biochem 47:1807–1812

    Article  CAS  Google Scholar 

  • Ma ZC, Liu NN, Chi Z, Liu GL, Chi ZM (2015) Genetic modification of the marine-isolated yeast Aureobasidium melanogenum P16 for efficient pullulan production from inulin. Mar Biotechnol 17:511–522

    Article  CAS  PubMed  Google Scholar 

  • Manitchotpisit P, Skory CD, Peterson SW, Price NPJ, Karl E, Vermillion KE, Leathers TD (2012) Poly(β-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. J Ind Microbiol Biotechnol 39:125–132

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Nakahara T, Tabuchi T (1993) Fermentative production of poly(β-L-malic acid), a polyelectolytic biopolyester by Aureobasidium sp. Biosci Biotechnol Biochem 57:638–642

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Hirotani N, Nakahara T (1996) Poly(betamalic acid) production by the non-growing cells of Aureobasidium sp strain A-91. J Ferm Bioeng 82:411–413

    Article  CAS  Google Scholar 

  • Rathberger K, Reiner H, Willibald B (1999) Comparative synthesis and hydrolytic degradation of poly(L-malate) by myxomycetes and fungi. Mycol Res 103:513–520

    Article  CAS  Google Scholar 

  • Rødkær SV, Færgeman NJ (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 14:683–696

    Article  PubMed  Google Scholar 

  • Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Matsushi K, Fukumoto J, Yamamoto T (1969) Poly(β)-malic acid—a new protease inhibitor from Penicillium cyclopium. Biochem Biophy Res Commun 35:619–624

    Article  CAS  Google Scholar 

  • Vert M, Lenz RW (1979) Preparation and properties of poly-beta-malic acid: a functional polyester of potential biomedical importance. Am. Chem. Soc. Div. Polym Chem Prepr 20:608–611

    CAS  Google Scholar 

  • Wang YK, Chi Z, Zhou HX, Liu GL, Chi ZM (2015) Enhanced production of Ca2+-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW. Microb Cell Fact. doi:10.1186/s12934-015-0296-3

    Google Scholar 

  • Willibald B, Bildl W, Lee BS, Holler E (1999) Is β-poly(L-malate) synthesis catalysed by a combination of β-L-malyl-AMP-ligase and β-poly(L-malate) polymerase? Eur J Biochem 265:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Zan Z, Zou X (2013) Efficient production of polymalic acid from raw sweet potato hydrolysate with immobilized cells of Aureobasidium pullulans CCTCC M2012223 in aerobic fibrous bed bioreactor. J Chem Technol Biotechnol. doi:10.1002/jctb.4033

    Google Scholar 

  • Zelle RM, de Hulster E, Kloezen W (2010) Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 76:744–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cai J, Dong J, Zhang D, Huang L, Xu Z, Cen P (2011) High-level production of poly(β-L-malic acid) with a new isolated Aureobasidium pullulans strain. Appl Microbiol Biotechnol 92:295–303

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Zhou Y, Yang ST (2013) Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng 110:2105–2113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2014CZ001, National Natural Science Foundation of China (Grant No. 31500029), and China Postdoctoral Science Foundation (Grant No. 2014M560576 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflicts of interest to this work. The authors alone are responsible for the content and writing of this article.

Additional information

Zhe Chi and Guanglei Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Z., Liu, GL., Liu, CG. et al. Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Microbiol Biotechnol 100, 3841–3851 (2016). https://doi.org/10.1007/s00253-016-7404-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7404-0

Keywords

Navigation