Skip to main content

Advertisement

Log in

Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It has been well documented that Aureobasidium pullulans is widely distributed in different environments. Different strains of A. pullulans can produce amylase, proteinase, lipase, cellulase, xylanase, mannanase, transferases, pullulan, siderophore, and single-cell protein, and the genes encoding proteinase, lipase, cellulase, xylanase, and siderophore have been cloned and characterized. Therefore, like Aspergillus spp., it is a biotechnologically important yeast that can be used in different fields. So it is very important to sequence the whole genomic DNA of the yeast cells in order to find new more bioproducts and novel genes from this yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: part I. Synthesis and structure–activity relationships of new pullulan sulfates. Carbohydr Polym 47:267–76

    CAS  Google Scholar 

  • Bencheqroun SK, Bajji M, Massart S, Labhilili M, Jaafari SE, Jijakli MH (2007) In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biol Technol 46:128–135

    CAS  Google Scholar 

  • Buzzini T, Martini A (2002) Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. Appl Microbiol 93:1020–1025

    CAS  Google Scholar 

  • Cately BJ, McDowell W (1982) Lipid-linked saccharides formed during pullulan biosynthesis in Aureobasidium pullulans. Carbohydr Res 103:65–75

    Google Scholar 

  • Chi ZM, Zhao SZ (2003) Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast. Enzyme Microb Technol 33:206–211

    CAS  Google Scholar 

  • Chi ZM, Liu J, Zhang W (2001) Trehalose accumulation from starch by Saccharomycopsis fibuligera sdu. Enzyme Microb Technol 28:240–5

    CAS  PubMed  Google Scholar 

  • Chi ZM, Liu ZM, Gao LM, Gong F, Ma CL, Wang XH, Li HF (2006) Marine yeasts and their applications in mariculture. J Ocean Univ Chin 5:251–256

    CAS  Google Scholar 

  • Chi Z, Ma C, Wang P, Li H (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98:534–538

    CAS  PubMed  Google Scholar 

  • Chi ZM, Yan KR, Gao LM, Li J, Wang XH, Wang L (2008) Diversity of marine yeasts with high protein content and evaluation of their nutritive compositions. J Mar Biol Assoc UK 88:1–6

    Google Scholar 

  • Christov LP, Prior BA (1996) Repeated treatments with Aureobasidium pullulans hemicellulases and alkali enhance biobleaching of sulphite pulps. Enzyme Microb Technol 18:244–250

    CAS  Google Scholar 

  • de Hoog GS (1993) Evolution of black yeasts: possible adaption to the human host. Antonie van Leeuwenhoek 63:105–109

    PubMed  Google Scholar 

  • de Wet BJM, van Zyl Prior WHBA (2006) Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 38:649–656

    Google Scholar 

  • Degeest B, Vuyst LD (2000) Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase and UDP-pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl Environ Microbiol 66:3519–3527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis C, Buhagiar RWM (1973) Comparative study of Aureobasidium pullulans A. prunorum sp. Nov., and Trichosporon pullulans. Trans Brit Mycol Soc 60:567–575

    Google Scholar 

  • Deshpande MS, Rale VB, Lynch JM (1992) Aureobasidium pullulans in applied microbiology: a status report. Enzyme Microb Technol 14:514–527

    CAS  Google Scholar 

  • Duan XH, Chi ZM, Li HF, Gao LM (2007) High pullulan yield is related to low UDP-glucose level and high pullulan-related synthases activity in Aureobasidium pullulans Y68. Ann Microbiol 57:243–248

    CAS  Google Scholar 

  • Duan XH, Chi ZM, Wang L, Wang XH (2008) Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 73:587–593

    CAS  PubMed  Google Scholar 

  • Gao LM, Chi ZM, Sheng J, Ni XM, Wang L (2007) Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis. Appl Microbiol Biotechnol 77:825–832

    CAS  PubMed  Google Scholar 

  • Grobben GJ, Smith MR, Sikkema J, de Bont JAM (1996) Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Appl Microbiol Biotechnol 46:279–284

    CAS  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A (2000) Hypersaline waters in salterns-natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Proc Biochem 38:1599–616

    CAS  Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330

    CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    CAS  Google Scholar 

  • He X, Liu N, Li W, Zhang Z, Zhang B, Yanhe Ma Y (2008) Inducible and constitutive expression of a novel thermostable alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme Microb Technol 43:13–18

    CAS  Google Scholar 

  • Iembo T, da Silva R, Pagnocca FC, Gomes E (2002) Production, characterization, and properties of β-glucosidase and β-xylosidase from a strain of Aureobasidium sp. Appl Biochem Microbiol 38:549–552

    CAS  Google Scholar 

  • Ikeda Y, Park EY, Okida N (2006) Bioconversion of waste office paper to gluconic acid in aturbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97:1030–1035

    CAS  PubMed  Google Scholar 

  • Isono N, Tochihara T, Kusnadi Y, Win TT, Watanabe K, Obae K, Ito H, Matsui H (2004) Site-directed mutagenesis of the essential aspartic acid and glutamic acid of the active site. J Biosci Bioeng 97:244–249

    CAS  PubMed  Google Scholar 

  • Janer C, Rohr LM, Pelaez CP, Laloi M, Cleusix V, Requena T, Meile L (2004) Hydrolysis of oligofructoses by the recombinant β-fructofuranosidase from Bifidobacterium lactis. Syst Appl Microbiol 27:279–285

    CAS  PubMed  Google Scholar 

  • Kim KC, Yoo SS, Oh YA, Kim SJ (2003) Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J Microbiol Biotechnol 13:1–8

    Google Scholar 

  • Kremnický L, Biely P (1997) β-Mannanolytic system of Aureobasidium pullulans. Arch Microbiol 167:350–355

    Google Scholar 

  • Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Microbiology 51:773–776

    CAS  Google Scholar 

  • Kurmar CG, Tagaki H (1999) Microbial alkaline protease: from bioindustrial viewpoint. Biotechnol Adv 17:561–594

    Google Scholar 

  • Kurtzman CP, Fell JW (2000) The yeasts. In: Kurtzman CP, Fell JW (eds) A taxonomic study, Fourth Revised and enlarged edition. Elsevier, Amsterdam, pp 77–947

    Google Scholar 

  • Lazaridon A, Roukas T, Biliaderis CG, Varikousi H (2002) Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme Microb Technol 31:122–132

    Google Scholar 

  • Leathers TD (1986) Colour variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol 52:1026–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leite RSR, Gomes E, Da-Silva R (2007) Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Proc Biochem 42:1101–6

    CAS  Google Scholar 

  • Leite RSR, Alves-Prado AF, Cabral H, Pagnoccab FC, Gomesa E, Da-Silva R (2008) Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microb Technol 43:391–395

    CAS  Google Scholar 

  • Li HF, Chi ZM, Wang XH, Ma CL (2007a) Amylase production by the marine yeast Aureobasidium pullulans N13d. J Ocean Univ Chin 6:61–66

    Google Scholar 

  • Li HF, Chi ZM, Duan XH, Wang L, Sheng J, Wu LF (2007b) Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Proc Biochem 42:462–465

    Google Scholar 

  • Li HF, Chi ZM, Wang XH, Duan XH, Ma LY, Gao LM (2007c) Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb Technol 40:1006–1012

    CAS  Google Scholar 

  • Li CH, Song LS, Zhao JM, Zhu L, Zou HB, Zhang H, Wang ZH, Cai ZH (2007d) Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellfish Immunol 22:663–672

    PubMed  Google Scholar 

  • Li XL, Zhang ZQ, Dean JFD, Eriksson KEL, Ljungdahl LG (1993) Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Appl Enviorn Microbiol 59:3212–3218

    CAS  Google Scholar 

  • Li XL, Ljungdahl LG (1994) Cloning, sequencing, and regulation of a xylanase gene from the fungus Aureobasidium pullulans Y-2311-1. Appl Environ Microbiol 60:3160–3166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Ljungdahl LG (1996) Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae. Appl Environ Microbiol 62:209–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JF, Chi ZM, Li HF, Wang XH (2008) Characterization of a mutant of Alteromonas aurantia A18 and its application in mariculture. J Ocean Univ Chin 7:55–59

    CAS  Google Scholar 

  • Lin TC, Chen C (2004) Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media. Proc Biochem 39:1103–1109

    CAS  Google Scholar 

  • Liu ZQ, Li XY, Chi ZM, Wang L, Li J, Wang XH (2008a) Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie van Leeuwenhoek 94:245–255

    CAS  PubMed  Google Scholar 

  • Liu ZQ, Chi ZM, Wang L, Li J (2008b) Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochem Eng J 40:445–451

    CAS  Google Scholar 

  • Lu F, Lu M, Lu Z, Bie X, Zhao H, Wang Y (2008) Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresour Technol 99:5938–5941

    CAS  PubMed  Google Scholar 

  • Ma CL, Ni XM, Chi ZM, Ma LY, Gao LM (2007) Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Mar Biotechnol 9:343–351

    CAS  Google Scholar 

  • Mounir R, Durieux A, Bodo C Allard C, Simon JP, Achbani EH, El-Jaafari S, Douira A, Jijakli MH (2007) Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum. Biotechnol Lett 29:553–559

    CAS  PubMed  Google Scholar 

  • Nagahama T (2006) Yeast biodiversity in freshwater, marine and deep-sea environments. In: The Yeast handbook biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 241–262

    Google Scholar 

  • Ni XM, Chi ZM, Liu ZQ, Yue LX (2008a) Screening of protease producing marine yeasts for production of the bioactive peptides. Acta Oceanol Sin 27:1–10

    Google Scholar 

  • Ni XM, Chi ZM, Ma CL, Madzak C (2008b) Cloning, characterization, and expression of the gene encoding alkaline protease in the marine yeast Aureobasidium pullulans 10. Mar Biotechnol 10:319–327

    CAS  Google Scholar 

  • Ni XM, Yue LX, Chi ZM, Li J, Wang XH, Madzak C (2009) Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. Mar Biotechnol 11:81–89

    CAS  Google Scholar 

  • Nidhi G, Gupta JK, Soni SK (2005) A novel raw starch digesting thermostable a amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol 37:723–34

    Google Scholar 

  • Ninawe S, Kapoor M, Kuhad RC (2008) Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour Technol 99:1252–1258

    CAS  PubMed  Google Scholar 

  • Onderková Z, Bryjak J, Polakovič M (2007) Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier. Chem Pap 61:359–363

    Google Scholar 

  • Ravindra AP (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479

    PubMed  Google Scholar 

  • Riquelme M (1996) Fungal siderophores in plant–microbe interactions. Microbiol SEM 12:537–546

    CAS  Google Scholar 

  • Sangeetha PT, Rameshb MN, Prapulla SG (2004) Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Proc Biochem 39:753–758

    CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    CAS  PubMed  Google Scholar 

  • Shibata M, Asahina M, Teramoto R, Yosomiya R (2001) Chemical modification of pullulan by isocyanaye compounds. Polymer 42:59–64

    CAS  Google Scholar 

  • Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide pullulan. Carbohydr Res 339:447–460

    CAS  PubMed  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531 doi:https://doi.org/10.1016/j.carbpol.2008.01.003

    CAS  PubMed  Google Scholar 

  • Sutherland LW (1998) Novel and established application of microbial polysaccharide. Trends Biotechnol 16:41–6

    CAS  PubMed  Google Scholar 

  • Urz’ı C, De Leo F, Lo Passo C, Criseo G (1999) Intra-specific diversity of Aureobasidium pullulans strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). J Microbiol Methods 36:95–105

    Google Scholar 

  • Wang L, Chi ZM, Wang XH, Liu ZQ, Li J (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann Microbiol 57:495–501

    CAS  Google Scholar 

  • Wang WL, Chi ZM, Chi Z, Li J, Wang XH (2008) Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technol doi:https://doi.org/10.1016/j.biortech.2008.12.010

    CAS  PubMed  Google Scholar 

  • Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66:3194–3200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Z, Liao W, Chen S (2005) Production of cellulase by Trichoderma reesei from dairy manure. Bioresour Technol 96:491–499

    CAS  PubMed  Google Scholar 

  • Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2007) Purification and some properties of β-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. J Biosci Bioeng 103:491–493

    CAS  PubMed  Google Scholar 

  • Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2008) Production of fructooligosaccharides by crude enzyme preparations of β-fructofuranosidase from Aureobasidium pullulans. Biotechnol Lett 30:535–539

    CAS  PubMed  Google Scholar 

  • Yun JW, Kim DH, Song SK (1997) Enhanced production of fructosyltransferase and glucosyltransferase by substrate-feeding cultures of Aureobasidium pullulans. J Ferment Eng 84:261–263

    CAS  Google Scholar 

  • Yurlova NA, de Hoog GS (1997) A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie van Leeuwenhoek 72:141–147

    CAS  PubMed  Google Scholar 

  • Zhang L, Chi ZM (2007) Screening and identification of a cellulase producing marine yeast and medium and fermentation condition optimization for cellulase production. J Ocean Univ Chin Sup II37:101–108

    Google Scholar 

Download references

Acknowledgments

This research was supported by grants 30771645 and 30670058 from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, Z., Wang, F., Chi, Z. et al. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82, 793–804 (2009). https://doi.org/10.1007/s00253-009-1882-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1882-2

Keywords

Navigation