Skip to main content
Log in

Poly(β-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Poly(β-L-malic acid) (PMA) is a natural biopolyester that has pharmaceutical applications and other potential uses. In this study, we examined PMA production by 56 strains of the fungus Aureobasidium pullulans representing genetically diverse phylogenetic clades. Thirty-six strains were isolated from various locations in Iceland and Thailand. All strains from Iceland belonged to a newly recognized clade 13, while strains from Thailand were distributed among 8 other clades, including a novel clade 14. Thirty of these isolates, along with 26 previously described strains, were examined for PMA production in medium containing 5% glucose. Most strains produced at least 4 g PMA/L, and several strains in clades 9, 11, and 13 made 9–11 g PMA/L. Strains also produced both pullulan and heavy oil, but PMA isolated by differential precipitation in ethanol exhibited up to 72% purity with no more than 12% contamination by pullulan. The molecular weight of PMA from A. pullulans ranged from 5.1 to 7.9 kDa. Results indicate that certain genetic groups of A. pullulans are promising for the production of PMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Braud C, Bunel C, Vert M (1985) Poly(β-malic acid): a new polymeric drug-carrier. Evidence for degradation in vitro. Polym Bull 13:293–299

    Article  CAS  Google Scholar 

  2. Deshpande MS, Rale VB, Lynch JM (1992) Aureobasidium pullulans in applied microbiology: a status report. Enzyme Microbial Technol 14:514–527

    Article  CAS  Google Scholar 

  3. Fischer H, Erdmann S, Holler E (1989) An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase in vitro. Biochem 28:5219–5226

    Article  CAS  Google Scholar 

  4. Hibbett DS et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  5. Holler E, Angerer B, Achhammer G, Miller S, Windisch C (1992) Biological and biosynthetic properties of poly-L-malate. FEMS Microbiol Rev 103:109–118

    CAS  Google Scholar 

  6. Kurosawa T, Sakai K, Nakahara T, Oshima Y, Tabuchi T (1994) Extracellular accumulation of the polyol lipids, 3, 5-dihydroxydecanoyl and 5-hydroxy-2-decenoyl esters of arabitol and mannitol, by Aureobasidium sp. Biosci Biotech Biochem 58:2057–2060

    Article  CAS  Google Scholar 

  7. Leathers TD (1989) Purification and properties of xylanase from Aureobasidium. J Ind Microbiol 4:341–348

    Article  CAS  Google Scholar 

  8. Leathers TD (2002) Pullulan. In: Vandamme EJ, De Baets S, Steinbuchel A (eds) Biopolymers, vol 6, polysaccharides II: polysaccharides from eukaryotes. Wiley-VCH, Weinheim, pp 1–35

    Google Scholar 

  9. Lee BS, Maurer T, Kalbitzer HR, Holler E (1999) β-Poly(L-malate) production by Physarum polycephalum: 13C Nuclear magnetic resonance studies. Appl Microbiol Biotechnol 52:415–420

    Article  CAS  Google Scholar 

  10. Liu S, Steinbuchel A (1996) Investigation of poly(β-L-malic acid) production by strains of Aureobasidium pullulans. Appl Microbiol Biotechnol 46:273–278

    Article  CAS  Google Scholar 

  11. Ljubimova JY, Fujita M, Khazenzon NM, Lee BS, Wachsmann-Hogiu S, Farkas DL, Black KL, Holler E (2008) Nanoconjugate based on polymalic acid for tumor targeting. Chemico-Biol Interact 171:195–203

    Article  CAS  Google Scholar 

  12. Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  PubMed  CAS  Google Scholar 

  13. Manitchotpisit P, Leathers TD, Peterson SW, Kurtzman CP, Li X-L, Eveleigh DE, Lotrakul P, Prasongsuk S, Dunlap CA, Vermillion KE, Punnapayak H (2009) Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycol Res 113:1107–1120

    Article  PubMed  CAS  Google Scholar 

  14. Manitchotpisit P, Price NPJ, Leathers TD, Punnapayak H (2011) Heavy oils produced by Aureobasidium pullulans. Biotechnol Lett 33:1151–1157

    Google Scholar 

  15. Nagata N, Nakahara T, Tahuchi T (1993) Fermentative production of poly(β-L-malic acid), a polyelectronic biopolyester by Aureobasidium sp. Biosci Biotech Biochem 57:638–642

    Article  CAS  Google Scholar 

  16. Nakajima-Kambe T, Hirotani N, Nakahara T (1996) Poly(beta-malic acid) production by the non-growing cells of Aureobasidium sp strain A-91. J Ferm Bioeng 82:411–413

    Article  CAS  Google Scholar 

  17. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052

    Article  PubMed  CAS  Google Scholar 

  18. Shimada K, Matsushi K, Fukumoto J, Yamamoto T (1969) Poly-(L)-malic acid—a new protease inhibitor from Penicillium cyclopium. Biochem Biophy Res Commun 35:619–624

    Article  CAS  Google Scholar 

  19. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    Article  CAS  Google Scholar 

  20. Steinbuchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  21. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  23. Vert M (1998) Chemical routes to poly(β-malic acid) and potential applications of this water-soluble bioresorbable poly(β-hydroxy alkanoate). Polym Degrad Stab 59:169–175

    Article  CAS  Google Scholar 

  24. Zalar P, Gostincar C, de Hoog GS, Ursic V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge RSU grant number 37/52 from the Research Center of Rangsit University for partial financial support. Appreciation is expressed for the kind assistance provided by Kristina Glenzinski, Melinda Nunnally, and Trina Hartman. Poly(β-L-malic acid) from P. polycephalum (M w 30,000) was the kind gift of Dr. Eggehard Holler, Cedars-Sinai Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Leathers.

Additional information

“Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable. USDA is an equal opportunity provider and employer.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manitchotpisit, P., Skory, C.D., Peterson, S.W. et al. Poly(β-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans . J Ind Microbiol Biotechnol 39, 125–132 (2012). https://doi.org/10.1007/s10295-011-1007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1007-7

Keywords

Navigation