Applied Microbiology and Biotechnology

, Volume 99, Issue 21, pp 8943–8954 | Cite as

Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome

  • Tomohiko Matsuzawa
  • Satoshi Kaneko
  • Katsuro YaoiEmail author
Biotechnologically relevant enzymes and proteins


A putative glycoside hydrolase family 43 β-xylosidase/α-arabinofuranosidase (CoXyl43) that promotes plant biomass saccharification was isolated via functional screening of a compost microbial metagenomic library and characterized. CoXyl43 promoted the saccharification of plant biomasses, including xylans (xylan and arabinoxylan), rice straw, and Erianthus, by degrading xylooligosaccharide residues to monosaccharide residues. The recombinant CoXyl43 protein exhibited both β-xylosidase and α-arabinofuranosidase activities for chromogenic substrates, with optimal activity at pH 7.5 and 55 °C. Both of these activities were inactivated by ethanol, dimethylsulfoxide, and zinc and copper ions but were activated by manganese ions. Only the β-xylosidase activity of recombinant CoXyl43 was enhanced in the presence of calcium ions. These results indicate that CoXyl43 exhibits unique enzymatic properties useful for biomass saccharification.


β-xylosidase α-arabinofuranosidase Biomass Metagenome Glycoside hydrolase family 43 



We thank Dr. Y. Kobayashi (Japan Bioindustry Association) for provision of the biomass materials and helpful discussion. This work was supported in part by grants from the New Energy and Industrial Technology Development Organization (NEDO).

Conflict of interest

The authors declare no conflicts of interest.


  1. Alvarez TM, Paiva JH, Ruiz DM, Cairo JP, Pereira IO, Paixão DA, de Almeida RF, Tonoli CC, Ruller R, Santos CR, Squina FM, Murakami MT (2013) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 8Google Scholar
  2. Bao L, Huang Q, Chang L, Sun Q, Zhou J, Lu H (2012) Cloning and characterization of two β-glucosidase/xylosidase enzymes from yak rumen metagenome. Appl Biochem Biotechnol 166:72–86CrossRefPubMedGoogle Scholar
  3. Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumárraga M, Yakimov MM, García-Arellano H, Alcalde M, Fernández VM, Elborough K, Andreu JM, Ballesteros A, Plou FJ, Timmis KN, Ferrer M, Golyshin PN (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281:22933–22942CrossRefPubMedGoogle Scholar
  4. Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) The structure of an inverting GH43 β-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J Mol Biol 359:97–109CrossRefPubMedGoogle Scholar
  5. Dougherty MJ, D’haeseleer P, Hazen TC, Simmons BA, Adams PD, Hadi MZ (2012) Glycoside hydrolases from a targeted compost metagenome, activity-screening and functional characterization. BMC Biotechnol 12:38PubMedCentralCrossRefPubMedGoogle Scholar
  6. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  7. Ferrer M, Ghazi A, Beloqui A, Vieites JM, López-Cortés N, Marín-Navarro J, Nechitaylo TY, Guazzaroni ME, Polaina J, Waliczek A, Chernikova TN, Reva ON, Golyshina OV, Golyshina PN (2012) Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. PLoS One 7:e38134PubMedCentralCrossRefPubMedGoogle Scholar
  8. Flipphi MJ, Panneman H, van der Veen P, Visser J, de Graaff LH (1993a) Molecular cloning, expression and structure of the endo-1,5-α-L-arabinase gene of Aspergillus niger. Appl Microbiol Biotechnol 40:318–326CrossRefPubMedGoogle Scholar
  9. Flipphi MJ, Visser J, van der Veen P, de Graaff LH (1993b) Cloning of the Aspergillus niger gene encoding α-L-arabinofuranosidase A. Appl Microbiol Biotechnol 39:335–340CrossRefPubMedGoogle Scholar
  10. Fujimoto Z, Kaneko S, Kuno A, Kobayashi H, Kusakabe I, Mizuno H (2004) Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J Biol Chem 279:9606–9614CrossRefPubMedGoogle Scholar
  11. Gasparic A, Martin J, Daniel AS, Flint HJ (1995) A xylan hydrolase gene cluster in Prevotella ruminicola B14: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and β-(1,4)-xylosidase activities. Appl Environ Microbiol 61:2958–2964PubMedCentralPubMedGoogle Scholar
  12. Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA (2013) Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol 97:2423–2431CrossRefPubMedGoogle Scholar
  13. Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water-extractable arabinoxylans. J Cereal Sci 16:53–67CrossRefGoogle Scholar
  14. Gupta R, Govil T, Capalash N, Sharma P (2012) Characterization of a glycoside hydrolase family 1 β-glucosidase from hot spring metagenome with transglycosylation activity. Appl Biochem Biotechnol 168:1681–1693CrossRefPubMedGoogle Scholar
  15. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–249CrossRefPubMedGoogle Scholar
  16. Jordan DB, Wagschal K, Grigorescu AA, Braker JD (2013) Highly active β-xylosidase of glycoside hydrolase family 43 operating on natural and artificial substrates. Appl Microbiol Biotechnol 97:4415–4428CrossRefPubMedGoogle Scholar
  17. Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y (2012) Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomass through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39:1741–1749CrossRefPubMedGoogle Scholar
  18. Kawamori M, Morikawa Y, Takasawa S (1986) Induction and production of cellulases by L-sorbose in Trichoderma reesei. Appl Microbiol Biotechnol 24:449–453Google Scholar
  19. Kimura N, Sakai K, Nakamura K (2010) Isolation and characterization of a 4-nitrotoluene-oxidizing enzyme from activated sludge by a metagenomic approach. Microbes Environ 25:133–139CrossRefPubMedGoogle Scholar
  20. Kim YA, Yoon KH (2010) Characterization of a Paenibacillus woosongensis β-xylosidase/α-arabinofuranosidase produced by recombinant Escherichia coli. J Microbiol Biotechnol 20:1711–1716PubMedGoogle Scholar
  21. Kormelink FJM, Vorage AGJ (1993) Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degradation enzymes. Appl Microbiol Biotechnol 38:688–695CrossRefGoogle Scholar
  22. Lee CC, Braker JD, Grigorescu AA, Wagschal K, Jordan DB (2013) Divalent metal activation of a GH43 β-xylosidase. Enzyme Microb Technol 52:84–90CrossRefPubMedGoogle Scholar
  23. Lee CM, Yeo YS, Lee JH, Kim SL, Kim JB, Han NS, Koo BS, Yoon SH (2008) Identification of a novel 4-hydroxyphenylpyruvate dioxygenase from the soil metagenome. Biochem Biophys Res Commun 370:322–326CrossRefPubMedGoogle Scholar
  24. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCentralCrossRefPubMedGoogle Scholar
  25. McAndrew RP, Park JI, Heins RA, Reindl W, Friedland GD, D’haeseleer P, Northen T, Sale KL, Simmons BA, Adams PD (2013) From soil to structure, a novel dimeric β-glucosidase belonging to glycoside hydrolase family 3 isolated from compost using metagenomic analysis. J Biol Chem 288:14985–14992PubMedCentralCrossRefPubMedGoogle Scholar
  26. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186Google Scholar
  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  28. Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W (2012) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 109:92–99CrossRefPubMedGoogle Scholar
  29. Nogawa M, Goto M, Okada H, Morikawa Y (2001) L-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr Genet 38:329–334CrossRefPubMedGoogle Scholar
  30. Okada H, Tada K, Sekiya T, Yokoyama K, Takahashi A, Tohda H, Kumagai H, Morikawa (1998) Molecular characterization and heterologous expression of the gene encoding a low-molecular mass endoglucanase from Trichoderma reesei QM9414. Appl Environ Microbiol 64:555–563PubMedCentralPubMedGoogle Scholar
  31. Okamura Y, Kimura T, Yokouchi H, Meneses-Osorio M, Katoh M, Matsunaga T, Takeyama H (2010) Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge-associated bacteria. Mar Biotechnol (NY) 12:395–402CrossRefGoogle Scholar
  32. Pang H, Zhang P, Duan CJ, Mo XC, Tang JL, Feng JX (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol 58:404–408CrossRefPubMedGoogle Scholar
  33. Penttilä M, Lehtovaara P, Nevalaninen H, Bhikhabhai R, Knowles J (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45:253–263CrossRefPubMedGoogle Scholar
  34. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology 158:58–68CrossRefPubMedGoogle Scholar
  35. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefPubMedGoogle Scholar
  36. Sakka K, Yoshikawa K, Kojima Y, Karita S, Ohmiya K, Shimada K (1993) Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with β-D-xylosidase and α-L-arabinofuranosidase activities, and properties of the translated product. Biosci Biotechnol Biochem 57:268–272CrossRefPubMedGoogle Scholar
  37. Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Ståhlberg J, Johansson G, Claeyssens M, Tomme P, Knowles JK (1988) EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63:11–22CrossRefPubMedGoogle Scholar
  38. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 β-D-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397CrossRefPubMedGoogle Scholar
  39. Shao W, Wiegel J (1992) Purification and characterization of a thermostable β-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol 174:5848–5853PubMedCentralPubMedGoogle Scholar
  40. Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9:2289–2297CrossRefPubMedGoogle Scholar
  41. Teeri T, Salovuori I, Knowles J (1983) The molecular cloning of the major cellulase gene from Trichoderma reesei. Nat Biotechnol 1:696–699CrossRefGoogle Scholar
  42. Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I, Knowles L (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51:43–52CrossRefPubMedGoogle Scholar
  43. Tenkanen M, Puls J, Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb Technol 14:566–574CrossRefGoogle Scholar
  44. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245CrossRefPubMedGoogle Scholar
  45. Uchiyama T, Miyazaki K, Yaoi K (2013) Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Bio Chem 288:18325–18334CrossRefGoogle Scholar
  46. Utt EA, Eddy CK, Keshav KF, Ingram LO (1991) Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with β-D-xylosidase and α-L-arabinofuranosidase activities. Appl Environ Microbiol 57:1227–1234PubMedCentralPubMedGoogle Scholar
  47. Viborg AH, Sørensen KI, Gilad O, Steen-Jensen DB, Dilokpimol A, Jacobsen S, Svensson B (2013) Biochemical and kinetic characterization of a novel xylooligosaccharide-upregulated GH43 β-D-xylosidase/α-L-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12. AMB Express 3:56Google Scholar
  48. Wagschal K, Heng C, Lee CC, Wong DW (2009) Biochemical characterization of a novel dual-functional arabinofuranosidase/xylosidase isolated from compost starter mixture. Appl Microbiol Biotechnol 81:855–863CrossRefPubMedGoogle Scholar
  49. Whitehead TR (1995) Nucleotide sequences of xylan-inducible xylanase and xylosidase/arabinosidase genes from Bacteroides ovatus V975. Biochim Biophys Acta 1244:239–241CrossRefPubMedGoogle Scholar
  50. Whitehead TR, Cotta MA (2001) Identification of a broad-specificity xylosidase/arabinosidase important for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA192. Curr Microbiol 43:293–298CrossRefPubMedGoogle Scholar
  51. Xu J, Takakuwa N, Nogawa M, Okada H, Morikawa Y (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49:718–724CrossRefGoogle Scholar
  52. Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, Yao B (2014) Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinofuranosidase and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 148:381–387CrossRefPubMedGoogle Scholar
  53. Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012a) β-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54:79–87CrossRefPubMedGoogle Scholar
  54. Zhou J, Bao L, Chang L, Zhou Y, Lu H (2012b) Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D-xylosidase from metagenome. J Ind Microbiol Biotechnol 39:143–152CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tomohiko Matsuzawa
    • 1
  • Satoshi Kaneko
    • 2
    • 3
  • Katsuro Yaoi
    • 1
    Email author
  1. 1.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Food Biotechnology DivisionNational Food Research InstituteTsukubaJapan
  3. 3.Department of Subtropical Biochemistry and Biotechnology, Faculty of AgricultureUniversity of the RyukyusNishiharaJapan

Personalised recommendations