Skip to main content
Log in

Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Although the capabilities of Trichoderma reesei cellulases have been greatly improved, these enzymes are still too costly for commercial use. The aim of this research was to assess the biomass saccharification capability of JN11, a recombinant cellulase, compared with that of the commercially available cellulases Accellerase 1500 and Cellic CTec. The activities of JN11, Accellerase 1500, and Cellic CTec were compared by using various types of cellulosic biomass, including rice straw, Erianthus, eucalyptus, and Japanese cedar. JN11 had higher saccharification capability for rice straw, Erianthus, eucalyptus, and Japanese cedar compared with the commercial cellulases. The JN11 saccharification of cellulosic biomasses, including hemicellulose (NaOH-pretreated biomasses), resulted in high glucose and xylose yields because of the high xylanase/xylosidase activity of JN11. Moreover, even JN11 saccharification of hemicellulose-free biomasses (sulfuric acid-, hydrothermally, and steam exploded-pretreated biomasses) resulted in high glucose yields. The cellulase activity of JN11, however, was comparable to that of its commercial counterparts. These findings indicate that the saccharification ability of cellulase is unrelated to its cellulase activity when measured against Avicel, CMC, pNP-lactoside, and other substrates. JN11 showed high activity for all types of pretreated cellulosic biomasses, indicating its usefulness for saccharification of various cellulosic biomasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acebal C, Castillon MP, Estrada P, Mata I, Costa E, Aguado J, Romero D, Jimenez F (1986) Enhanced cellulase production from Trichoderma reesei QM 9414 on physically treated wheat straw. Appl Microbiol Biotechnol 24:218–223

    Article  CAS  Google Scholar 

  2. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD (2010) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnology for Biofuels doi. doi:10.1186/1754-6834-3-22

    Google Scholar 

  3. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Research 3:82–92

    Article  Google Scholar 

  4. Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  PubMed  CAS  Google Scholar 

  5. Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    Article  CAS  Google Scholar 

  6. Goyal A, Ghosh B (1991) Characteristics of fungal cellulases. Bioresource Technol 36:37–50

    Article  CAS  Google Scholar 

  7. Henriksson H, Stählberg J, Isaksson R, Pettersson G (1996) The active sites of cellulases are involved in chiral recognition: a comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Lett 390:339–344

    Article  PubMed  CAS  Google Scholar 

  8. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282

    Article  PubMed  CAS  Google Scholar 

  9. Kabel MA, van der Maarel MJEC, Klip G, Voragen AGJ, Schols HA (2006) Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnol Bioeng 93:56–63

    Article  PubMed  CAS  Google Scholar 

  10. Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F (2002) Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 99:63–78

    Article  PubMed  CAS  Google Scholar 

  11. Kawamori M, Morikawa Y, Takasawa S (1986) Induction and production of cellulases by l-sorbose in Trichoderma reesei. Appl Microbiol Biotechnol 24:449–453

    CAS  Google Scholar 

  12. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  PubMed  CAS  Google Scholar 

  13. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Progr 15:804–816

    Article  CAS  Google Scholar 

  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  15. Nagendran S, Hallen-Adams HE, Paper JM, Aslam N, Walton JD (2009) Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435

    Article  PubMed  CAS  Google Scholar 

  16. Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W (2012) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 109:92–99

    Article  PubMed  CAS  Google Scholar 

  17. Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105:87–100

    Article  PubMed  Google Scholar 

  18. Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  PubMed  CAS  Google Scholar 

  19. Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulase and pretreated corn stover. Biotechnology for Biofuels doi. doi:10.1186/1754-6834-4-18

    Google Scholar 

  20. Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y (2009) Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters. Appl Microbiol Biotechnol 82:899–908

    Article  PubMed  CAS  Google Scholar 

  21. Saloheimo M, Kuja-Panula J, Ylösmäki E, Ward M, Penttilä M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Appl Environ Microb 68:4546–4553

    Article  CAS  Google Scholar 

  22. Samuel R, Foston M, Jiang N, Allison L, Ragauskas AJ (2011) Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polym Degrad Stabil 96:2002–2009

    Article  CAS  Google Scholar 

  23. Silverstein RA, Chen Y, Shama-Shivappa RR, Boyette MD, Osbome J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  PubMed  CAS  Google Scholar 

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedures. http://www.eere.energy.gov/biomass/analytical_procedures.html#LAP-002

  25. Tangnu SK, Blanch HW, Wilke CR (1981) Enhanced production of cellulase, hemicellulase, and β-glucosidase by Trichoderma reesei (Rut C-30). Biotechnol Bioeng 23:1837–1849

    Article  CAS  Google Scholar 

  26. Walseth CS (1952) Occurrence of cellulose in enzymes preparations from microorganisms. TAPPI 35:228–233

    CAS  Google Scholar 

  27. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  28. Woodward J (1991) Synergism in cellulase systems. Bioresource Technol 36:67–75

    Article  CAS  Google Scholar 

  29. Xu J, Nogawa M, Okada H, Morikawa Y (2000) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 54:370–375

    Article  PubMed  CAS  Google Scholar 

  30. Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin-containing substrates. Biotechnol Bioeng 94:611–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the New Energy and Industrial Technology Development Organization (NEDO) Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, T., Nakazawa, H., Ida, N. et al. Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39, 1741–1749 (2012). https://doi.org/10.1007/s10295-012-1195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1195-9

Keywords

Navigation