Skip to main content
Log in

Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs), a promising family of bio-based polymers, are considered to be alternatives to traditional petroleum-based plastics. Copolymers like poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) have been shown to exhibit favorable physical and mechanical properties, due to decreased crystallinity resulting from the presence of medium-chain-length 3-hydroxyhexanoate (3HHx) monomers. In this study, we produced P(HB-co-HHx) using engineered Ralstonia eutropha strains containing deletions of the acetoacetyl-CoA reductase (phaB) genes and replacing the native PHA synthase with phaC2 from Rhodococcus aetherivorans I24 and by using butyrate, a short-chain organic acid, as the carbon source. Although the wild-type R. eutropha did not produce P(HB-co-HHx) when grown on mixed acids or on butyrate as the sole carbon source, we are able to produce polymer containing up to 40 wt% 3HHx monomer with the aforementioned engineered R. eutropha strains using various concentrations of just butyrate as the sole carbon source. This is the first report for the production of P(HB-co-HHx) copolymer in R. eutropha using butyrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnew DE, Stevermer AS, Youngquist JT, Pfleger BF (2012) Engineering Escherichia coli for production of C12–C14 polyhydroxyalkanoate from glucose. Metab Eng 14(6):705–713

    Article  CAS  PubMed  Google Scholar 

  • Aldor IS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14(5):475–483

    Article  CAS  PubMed  Google Scholar 

  • Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym Degrad Stab 93(1):17–23

    Article  CAS  Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) Rapid gas-chromatographic method for determination of poly-beta-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6(1):29–37

    Article  CAS  Google Scholar 

  • Brigham CJ, Kurosawa K, Rha C, Sinskey AJ (2011) Bacterial carbon storage to value added products. J Microbial Biochem Technol 83(5):S3–S002

    Google Scholar 

  • Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192(20):5319–5328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Budde CF, Riedel SL, Hubner F, Risch S, Popovic MK, Rha C, Sinskey AJ (2011a) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89(5):1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011b) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77(9):2847–2854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38(8):2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Zhang G, Park SJ, Lee SY (2001) Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57(1–2):50–55

    CAS  PubMed  Google Scholar 

  • Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC (2011) Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 133(30):11399–11401

    Article  CAS  PubMed  Google Scholar 

  • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828

    Article  CAS  Google Scholar 

  • Feng L, Watanabe T, Wang Y, Kichise T, Fukuchi T, Chen GQ, Doi Y, Inoue Y (2002) Studies on comonomer compositional distribution of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s and thermal characteristics of their factions. Biomacromolecules 3(5):1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Fiedler S, Steinbuchel A, Rehm BH (2002) The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178(2):149–160

    Article  CAS  PubMed  Google Scholar 

  • Flammini A. (2008) Biofuels and the underlying causes of high food prices. Food and Agriculture Organization of the United Nations (FAO). Vol. 112 p 1–23

  • Fuchtenbusch B, Wullbrandt D, Steinbuchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 53(2):167–172

    Article  CAS  PubMed  Google Scholar 

  • Fukui T, Abe H, Doi Y (2002) Engineering of Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer. Biomacromolecules 3(3):618–624

    Article  CAS  PubMed  Google Scholar 

  • Kahara P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83(1):79–86

    Article  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619

    Article  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee KM, Chan HN, Steinbuchel A (1994) Comparison of recombinant Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnol Bioeng 44(11):1337–1347

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Oh DH, Ahn WS, Lee Y, Choi J, Lee SY (2000) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67(2):240–244

    Article  CAS  PubMed  Google Scholar 

  • Lehmann D, Radomski N, Lutke-Eversloh T (2012) New insights into the butyric acid metabolism of Clostridium acetobutylicum. Appl Microbiol Biotechnol 96(5):1325–1339

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhang J, Wu Q, Chen GQ (2003) Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid beta-oxidation pathway in E. coli. FEMS Microbiol Lett 221(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbuchel A (2013) PHA recovery from biomass. Biomacromolecules 14(9):2963–2972

    Article  CAS  PubMed  Google Scholar 

  • Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7(8):2249–2258

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Ahn WS, Green PR, Lee SY (2001) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biomacromolecules 2(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Kim TW, Kim MK, Lee SY, Lim SC (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30(6):1196–1206

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology (N Y) 13(2):142–150

    Article  CAS  Google Scholar 

  • Potrykus J, Mahaney B, White RL, Bearne SL (2007) Proteomic investigation of glucose metabolism in the butyrate-producing gut anaerobe Fusobacterium varium. Proteomics 7(11):1839–1853

    Article  CAS  PubMed  Google Scholar 

  • Qiu YZ, Han J, Guo JJ, Chen GQ (2005) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida. Biotechnol Lett 27(18):1381–1386

    Article  CAS  PubMed  Google Scholar 

  • Rehm BH, Kruger N, Steinbuchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273(37):24044–24051

    Article  CAS  PubMed  Google Scholar 

  • Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZA, Rha C, Sinskey AJ (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2013) Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110(2):461–470

    Article  CAS  PubMed  Google Scholar 

  • Steinbuchel A, Fuchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16(10):419–427

    Article  CAS  PubMed  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  • Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tappel RC, Zhu C, Nomura CT (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78(2):519–527

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilde E (1962) Untersuchungen Uber Wachstum Und Speicherstoffsynthese Von Hydrogenomonas. Arch Mikrobiol 43(2):109–137

    Article  CAS  Google Scholar 

  • Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25(1–3):111–121

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang Y, Chen GQ (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells Blood Substit Biotechnol 37(1):1–12

    Article  Google Scholar 

  • Yang YH, Brigham CJ, Budde CF, Boccazzi P, Willis LB, Hassan MA, Yusof ZA, Rha C, Sinskey AJ (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl Microbiol Biotechnol 87(6):2037–2045

    Article  CAS  PubMed  Google Scholar 

  • York GM, Junker BH, Stubbe JA, Sinskey AJ (2001) Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183(14):4217–4226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • York GM, Lupberger J, Tian J, Lawrence AG, Stubbe J, Sinskey AJ (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular poly[d-(−)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185(13):3788–3794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work at Konkuk University was partially supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy (20133030000300). This research was also partially supported by Polar Academic Program (PAP, PD13010) from KOPRI and “Cooperative Research Program for Agriculture Science & Technology Development (Project title: Isolation and identification of rhizobacteria for indoor VOCs removal, Project No. 010205022014)” Rural Development Administration, Republic of Korea. We thank Mr. John W. Quimby for review of this manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Hun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, JM., Brigham, C.J., Kim, YH. et al. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha . Appl Microbiol Biotechnol 98, 5461–5469 (2014). https://doi.org/10.1007/s00253-014-5617-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5617-7

Keywords

Navigation