Skip to main content
Log in

Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by bacteria for carbon and energy storage that also have commercial potential as bioplastics. One promising class of carbon feedstocks for industrial PHA production is plant oils, due to the high carbon content of these compounds. The bacterium Ralstonia eutropha accumulates high levels of PHA and can effectively utilize plant oil. Growth experiments that include plant oil, however, are difficult to conduct in a quantitative and reproducible manner due to the heterogeneity of the two-phase medium. In order to overcome this obstacle, a new culture method was developed in which palm oil was emulsified in growth medium using the glycoprotein gum arabic as the emulsifying agent. Gum arabic did not influence R. eutropha growth and could not be used as a nutrient source by the bacteria. R. eutropha was grown in the emulsified oil medium and PHA production was measured over time. Additionally, an extraction method was developed to monitor oil consumption. The new method described in this study allows quantitative, reproducible R. eutropha experiments to be performed with plant oils. The method may also prove useful for studying growth of different bacteria on plant oils and other hydrophobic carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degradation Stab 80:183–194

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Mol Biol Rev 54:450–472

    CAS  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    CAS  Google Scholar 

  • Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE, Rha C, Sinskey AJ (2010) Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 192:5454–5464

    Article  CAS  Google Scholar 

  • Bruheim P, Bredholt H, Eimhjellen K (1997) Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can J Microbiol 43:17–22

    Article  CAS  Google Scholar 

  • Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ (2010) Roles of multiple acetoacetyl coenzyme a reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192:5319–5328

    Article  CAS  Google Scholar 

  • Bühler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis. Biotechnol Bioeng 81:683–694

    Article  Google Scholar 

  • DiRusso CoC, PaN B, JaD W (1999) Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 38:129–197

    Article  CAS  Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Article  CAS  Google Scholar 

  • Goodrum LJ, Patel A, Leykam JF, Kieliszewski MJ (2000) Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins. Phytochemistry 54:99–106

    Article  CAS  Google Scholar 

  • Grimberg S, Stringfellow W, Aitken M (1996) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microbiol 62:2387–2392

    CAS  Google Scholar 

  • Hill K (2000) Fats and oils as oleochemical raw materials. Pure Appl Chem 72:1255–1264

    Article  CAS  Google Scholar 

  • Iverson S, Lang S, Cooper M (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287

    Article  CAS  Google Scholar 

  • Jaeger K-E, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degradation Stab 83:79–86

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  • Kim H-S, Jeon J-W, Kim B-H, Ahn C-Y, Oh H-M, Yoon B-D (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 70:391–396

    Article  CAS  Google Scholar 

  • Lawrence A, Schoenheit J, He A, Tian J, Liu P, Stubbe J, Sinskey A (2005) Transcriptional analysis of Ralstonia eutropha genes related to poly-(R)-3-hydroxybutyrate homeostasis during batch fermentation. Appl Microbiol Biotechnol 68:663–672

    Article  CAS  Google Scholar 

  • Loo C-Y, Lee W-H, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of Poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27:1405–1410

    Article  CAS  Google Scholar 

  • Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802

    Article  CAS  Google Scholar 

  • Meyers SR, Juhn FS, Griset AP, Luman NR, Grinstaff MW (2008) Anionic amphiphilic dendrimers as antibacterial agents. J Am Chem Soc 130:14444–14445

    Article  CAS  Google Scholar 

  • Mifune J, Nakamura S, Fukui T (2008) Targeted engineering of Cupriavidus necator chromosome for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Can J Chem 86:621–627

    Article  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Vosz I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  Google Scholar 

  • Qi W, Fong C, Lamport DTA (1991) Gum arabic glycoprotein is a twisted hairy rope. Plant Physiol 96:848–855

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  Google Scholar 

  • Salter GJ, Kelt DB (1995) Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol 15:139–177

    Article  CAS  Google Scholar 

  • Schmid A, Kollmer A, Witholt B (1998) Effects of biosurfactant and emulsification on two-liquid phase Pseudomonas oleovorans cultures and cell-free emulsions containing n-Decane. Enzyme Microb Technol 22:487–493

    Article  CAS  Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renewable Sustainable Energy Rev 4:111–133

    Article  CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  • Waltz E (2009) Biotech's green gold? Nat Biotechnol 27:15–18

    Article  CAS  Google Scholar 

  • Wilde E (1962) Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch Microbiol 43:109–137

    CAS  Google Scholar 

  • Willumsen PA, Karlson U, Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactants. Appl Microbiol Biotechnol 50:475–483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tony DeBono for assistance with TLC experiments. This work was funded by the Malaysia MIT Biotechnology Partnership Programme (MMBPP). We thank our MMBPP collaborators for helpful discussions throughout the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Sinskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budde, C.F., Riedel, S.L., Hübner, F. et al. Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89, 1611–1619 (2011). https://doi.org/10.1007/s00253-011-3102-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3102-0

Keywords

Navigation