Skip to main content

Advertisement

Log in

An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biodegradable polylactic acid has attracted much attention due to the increasing environmental pollution from petroleum-based plastics. Polylactic acid (PLA) biopolymers can be produced from fermentative lactic acid (LA), which can be obtained via dark fermentation of renewable feedstocks. PLA polymers are a promising alternative that has the potential to replace petroleum-based products. Bio-based degradable polymers have numerous applications in the biomedical field and are used as disposable packaging materials. PLA, however, is a comparatively expensive material to produce, and its mechanical and physical properties are generally inferior to those of petroleum-based plastics. Significant scientific and technical efforts are therefore required to discover, develop, and use polymers that promote social and economic development. Polymerization reactions as well as rheological, mechanical, thermal, and barrier properties influence the performance of PLA polymers. High-end markets have prioritized the commercialization of PLA synthesis from fermentative LA and the improvement of its mechanical and thermal properties. Ring-opening polymerization can be used to synthesize PLA polymers with high molecular weight, which are helpful for both biomaterials and bioplastics applications due to their unique characteristics. This review is intended to contribute to a better understanding and further development of PLA for biomedical and bioplastic applications. It also highlights PLA’s unique biological uses in tissue engineering, wound treatment, drug delivery, and orthopedics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hamad, K., et al. (2015) Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5)

  2. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852

    Article  Google Scholar 

  3. Ahmad A, Banat F, Taher H (2020) A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ Technol Innov 20:101138

    Article  Google Scholar 

  4. Qualman, D., Global plastics production, 1917 to 2050. 2017.

  5. Jem KJ, Tan B (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial Eng Polymer Res 3(2):60–70

    Article  Google Scholar 

  6. Smith M et al (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5(3):375–386

    Article  Google Scholar 

  7. Bodansky D (2010) The Copenhagen climate change conference: a postmortem. Am J Int Law 104(2):230–240

    Article  Google Scholar 

  8. Vaughan, A (2019) UN climate change summit. Elsevier.

  9. Plackett, D., Biopolymers: new materials for sustainable films and coatings. 2011: John Wiley & Sons.

  10. Jem KJ, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. Plastics from bacteria. Springer, pp 323–346

    Chapter  Google Scholar 

  11. Ahmad A et al (2021) Lactic acid recovery from date pulp waste fermentation broth by ions exchange resins. Environ Technol Innov 22:101438

    Article  Google Scholar 

  12. Wee Y-J, Kim J-N, Ryu H-W (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172

    Google Scholar 

  13. Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catalysis Reviews 51(3):293–324

    Article  Google Scholar 

  14. Philp A, Macdonald AL, Watt PW (2005) Lactate–a signal coordinating cell and systemic function. J Exp Biol 208(24):4561–4575

    Article  Google Scholar 

  15. Lampe KJ et al (2009) Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells. Biotechnol Bioeng 103(6):1214–1223

    Article  Google Scholar 

  16. Ahmad A, Banat F, Taher H (2021) Comparative study of lactic acid production from date pulp waste by batch and cyclic–mode dark fermentation. Waste Manage 120:585–593

    Article  Google Scholar 

  17. Ashraf, M.T et al. (2020) Enhanced short-chain carboxylic acids yield in dark fermentation by cyclic product removal. Biomass Conversion and Biorefinery.

  18. Ahmad, A., F. Banat, H. Taher (2020) Enhanced lactic acid production from food waste in dark fermentation with indigenous microbiota. Biomass Conversion and Biorefinery.

  19. de Albuquerque TL et al (2021) Polylactic acid production from biotechnological routes: A review. Int J Biol Macromol 186:933–951

    Article  Google Scholar 

  20. Zhao J et al (2013) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12(1):57

    Article  Google Scholar 

  21. Okano K et al (2009) Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75(2):462–467

    Article  Google Scholar 

  22. Sugiyama M et al (2016) Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae. J Biosci Bioeng 122(4):415–420

    Article  Google Scholar 

  23. Balla E et al (2021) Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 13(11):1822

    Article  Google Scholar 

  24. Tsuji, H (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications. Wiley.

  25. Ahmad A et al (2021) Polymerization of lactic acid produced from food waste by metal oxide-assisted dark fermentation. Environ Technol Innov 24:101862

    Article  Google Scholar 

  26. Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). RSC Adv 3(33):13558–13568

    Article  Google Scholar 

  27. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84

    Article  Google Scholar 

  28. Mehta R et al (2005) Synthesis of poly (lactic acid): a review. J Macromol Sci C Polym Rev 45(4):325–349

    Article  Google Scholar 

  29. Henton DE et al (2005) Polylactic acid technology. Natural fibers biopolymers biocomposites 16:527–577

    Google Scholar 

  30. Ajioka M et al (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68(8):2125–2131

    Article  Google Scholar 

  31. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  Google Scholar 

  32. Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: An overview. Prog Polym Sci 32(4):455–482

    Article  Google Scholar 

  33. Achmad F et al (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151(1):342–350

    Article  Google Scholar 

  34. Cheng Y et al (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4(3):259–264

    Article  Google Scholar 

  35. Jiménez, A., M. Peltzer, R. Ruseckaite (2014) Poly (lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry.

  36. Dutkiewicz S, Grochowska-Łapienis D, Tomaszewski W (2003) Synthesis of poly (L (+) lactic acid) by polycondensation method in solution. Fibres Textiles Eastern Europe 4(43):66–70

    Google Scholar 

  37. Fukushima K, Kimura Y (2008) An efficient solid-state polycondensation method for synthesizing stereocomplexed poly (lactic acid) s with high molecular weight. J Polym Sci Part A Polym Chem 46(11):3714–3722

    Article  Google Scholar 

  38. Gu S et al (2008) Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym Int 57(8):982–986

    Article  Google Scholar 

  39. Kim E et al (2009) Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening polymerization of lactide to produce polylactide. J Mol Catal A Chem 298(1–2):36–39

    Article  Google Scholar 

  40. Hu Y et al (2017) Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly (lactic acid) fibre production from food waste. J Clean Prod 165:157–167

    Article  Google Scholar 

  41. Kim KW, Woo SI (2002) Synthesis of High-Molecular-Weight Poly (L-lactic acid) by Direct Polycondensation. Macromol Chem Phys 203(15):2245–2250

    Article  Google Scholar 

  42. Rahmayetty, et al. (2018) Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production Biocatalysis and Agricultural Biotechnology 16: p. 683 691

  43. Bátori V et al (2018) Anaerobic degradation of bioplastics: A review. Waste Manage 80:406–413

    Article  Google Scholar 

  44. Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegradation 117:215–223

    Article  Google Scholar 

  45. Nurul Fazita MR et al (2016) Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials 9(6):435

    Article  Google Scholar 

  46. Höglund A, Odelius K, Albertsson A-C (2012) Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (L-lactide). ACS Appl Mater Interfaces 4(5):2788–2793

    Article  Google Scholar 

  47. Kale G, Auras R, Singh SP (2007) Comparison of the degradability of poly (lactide) packages in composting and ambient exposure conditions. Packag Technol Sci An Int J 20(1):49–70

    Article  Google Scholar 

  48. Itävaara M, Karjomaa S, Selin J-F (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46(6):879–885

    Article  Google Scholar 

  49. Gorrasi G., R. Pantani (2017) Hydrolysis and Biodegradation of Poly (lactic acid). Synthesis, Structure and Properties of Poly (lactic acid), p. 119–151.

  50. Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym Degrad Stab 137:122–130

    Article  Google Scholar 

  51. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly (lactide). Appl Microbiol Biotechnol 72(2):244–251

    Article  Google Scholar 

  52. Lomthong T et al (2015) Co-production of poly (L-lactide)-degrading enzyme and raw starch-degrading enzyme by Laceyella sacchari LP175 using agricultural products as substrate, and their efficiency on biodegradation of poly (L-lactide)/thermoplastic starch blend film. Int Biodeterior Biodegradation 104:401–410

    Article  Google Scholar 

  53. Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly (L-lactide)-degrading enzyme induced by amino acids, peptides, and poly (L-amino acids). J Polym Environ 12(3):139–146

    Article  Google Scholar 

  54. Jarerat A, Tokiwa Y (2001) Degradation of poly (L-lactide) by a fungus. Macromol Biosci 1(4):136–140

    Article  Google Scholar 

  55. Penkhrue W et al (2015) Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J Microbiol Biotechnol 31(9):1431–1442

    Article  Google Scholar 

  56. Apinya T, Sombatsompop N, Prapagdee B (2015) Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms. Int Biodeterior Biodegradation 99:23–30

    Article  Google Scholar 

  57. Aguirre-Joya JA et al (2018) Basic and applied concepts of edible packaging for foods. Food packaging and preservation. Elsevier, pp 1–61

    Google Scholar 

  58. Saklani P, Das S, Singh S (2019) A review of edible packaging for foods. Int J Curr Microbiol App Sci 8(7):2885–2895

    Article  Google Scholar 

  59. Jeevahan, J., et al. (2018) Waste into energy conversion technologies and conversion of food wastes into the potential products: a review. International Journal of Ambient Energy, p. 1–19.

  60. Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: A review. J Mater Sci 54(19):12290–12318

    Article  Google Scholar 

  61. Ahmadi, P., et al. (2020) Development of Ethyl Cellulose-based Formulations: A Perspective on the Novel Technical Methods. Food Reviews International, p. 1–48.

  62. Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: A review. Materials 11(10):1834

    Article  Google Scholar 

  63. Vink ET et al (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419

    Article  Google Scholar 

  64. Fotopoulou KN, Karapanagioti HK (2017) Degradation of various plastics in the environment. Hazardous chemicals associated with plastics in the marine environment. Springer, pp 71–92

    Chapter  Google Scholar 

  65. Wackett LP, Robinson SL (2020) The ever-expanding limits of enzyme catalysis and biodegradation: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochemical Journal 477(15):2875–2891

    Article  Google Scholar 

  66. Koshti R, Mehta L, Samarth N (2018) Biological recycling of polyethylene terephthalate: a mini-review. J Polym Environ 26(8):3520–3529

    Article  Google Scholar 

  67. Awaja F, Pavel D (2005) Recycling of PET. Eur Polymer J 41(7):1453–1477

    Article  Google Scholar 

  68. Mohanty, A.K., et al. (2005) Natural fibers, biopolymers, and biocomposites: an introduction. CRC press.

  69. Wan L et al (2019) Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl methacrylate. Composites Sci Technol 181:107675

    Article  Google Scholar 

  70. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  Google Scholar 

  71. Park K, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844

    Article  Google Scholar 

  72. Yusoff NH et al (2021) Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications. J Mol Struct 1232:129954

    Article  Google Scholar 

  73. Jiang T et al (2020) Starch-based biodegradable materials: Challenges and opportunities. Adv Ind Eng Polym Res 3(1):8–18

    Google Scholar 

  74. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96

    Article  Google Scholar 

  75. Mihai M, Legros N, Alemdar A (2014) Formulation-properties versatility of wood fiber biocomposites based on polylactide and polylactide/thermoplastic starch blends. Polym Eng Sci 54(6):1325–1340

    Article  Google Scholar 

  76. Sarasa J, Gracia JM, Javierre C (2009) Study of the biodisintegration of a bioplastic material waste. Biores Technol 100(15):3764–3768

    Article  Google Scholar 

  77. Wu CS (2012) Preparation, characterization, and biodegradability of renewable resource-based composites from recycled polylactide bioplastic and sisal fibers. J Appl Polym Sci 123(1):347–355

    Article  Google Scholar 

  78. Doi Y, Steinbüchel A (2002) Biopolymers, Applications and Commercial Products-Polyesters III. Wiley-VCH, Weiheim

    Google Scholar 

  79. Boey JY et al (2021) A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers 13(10):1544

    Article  Google Scholar 

  80. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34

    Article  Google Scholar 

  81. O’brien, F.J. 2011 Biomaterials & scaffolds for tissue engineering. Materials today, 14(3): p. 88–95.

  82. Kanczler J, Oreffo R (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15(2):100–114

    Article  Google Scholar 

  83. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  84. Huang L et al (2007) Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28(10):1741–1751

    Article  Google Scholar 

  85. Sears NA et al (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310

    Article  MathSciNet  Google Scholar 

  86. Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly (L-lactic acid) single crystals. Macromolecules 31(8):2461–2467

    Article  Google Scholar 

  87. Zhang Q et al (2011) Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32(1):87–94

    Article  Google Scholar 

  88. Iwasa J et al (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17(6):561–577

    Article  Google Scholar 

  89. Teixeira BN et al (2019) Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater 107(1):37–49

    Article  Google Scholar 

  90. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  Google Scholar 

  91. Yamane H, Sasai K (2003) Effect of the addition of poly (D-lactic acid) on the thermal property of poly (L-lactic acid). Polymer 44(8):2569–2575

    Article  Google Scholar 

  92. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  Google Scholar 

  93. Dürselen L et al (2001) Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res 58(6):666–672

    Article  Google Scholar 

  94. Shomura Y et al (2009) Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability. Acta Radiol 50(4):355–359

    Article  Google Scholar 

  95. Coutu DL, Yousefi AM, Galipeau J (2009) Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J Cell Biochem 108(3):537–546

    Article  Google Scholar 

  96. Kellomäki M et al (2000) Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials 21(24):2495–2505

    Article  Google Scholar 

  97. Papenburg BJ et al (2009) Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials 30(31):6228–6239

    Article  Google Scholar 

  98. Behonick DJ et al (2007) Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PloS one 2(11):e1150

    Article  Google Scholar 

  99. Caplan AI (2009) New era of cell-based orthopedic therapies. Tissue Eng Part B Rev 15(2):195–200

    Article  Google Scholar 

  100. Yagihara K et al (2013) Mandibular reconstruction using a poly (L-lactide) mesh combined with autogenous particulate cancellous bone and marrow: a prospective clinical study. Int J Oral Maxillofac Surg 42(8):962–969

    Article  Google Scholar 

  101. Eppley BL et al (2004) Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 114(4):850–856

    Article  Google Scholar 

  102. Imola MJ, Schramm VL (2002) Resorbable internal fixation in pediatric cranial base surgery. Laryngoscope 112(10):1897–1901

    Article  Google Scholar 

  103. Dong Y, Feng SS (2006) Nanoparticles of poly(D, L-lactide)/methoxy poly(ethylene glycol)-poly(D, L-lactide) blends for controlled release of paclitaxel. J Biomed Mater Res A 78(1):12–19

    Article  Google Scholar 

  104. Pan J, Feng SS (2008) Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials 29(17):2663–2672

    Article  Google Scholar 

  105. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  Google Scholar 

  106. Dixit S et al (2018) Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly (lactic acid)-Poly (ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells. Biomaterials 159:130–145

    Article  Google Scholar 

  107. Varga N et al (2019) The effect of synthesis conditions and tunable hydrophilicity on the drug encapsulation capability of PLA and PLGA nanoparticles. Colloids Surf B 176:212–218

    Article  Google Scholar 

  108. Chen S et al (2018) Modified poly (L-lactic acid) microspheres with nanofibrous structure suitable for biomedical application. Int J Polym Mater Polym Biomater 67(9):572–580

    Article  Google Scholar 

  109. Xin X, Guan YX, Yao SJ (2018) Sustained release of dexamethasone from drug-loading PLGA scaffolds with specific pore structure fabricated by supercritical CO2 foaming. J Appl Polym Sci 135(17):46207

    Article  Google Scholar 

  110. Giammona G., E.F. Craparo (2018) Biomedical applications of polylactide (PLA) and its copolymers. Multidisciplinary Digital Publishing Institute.

  111. Sharif F et al (2019) Bioresorbable antibacterial PCL-PLA-nHA composite membranes for oral and maxillofacial defects. Polym Compos 40(4):1564–1575

    Article  MathSciNet  Google Scholar 

  112. Sun S et al (2018) Preparation of highly interconnected porous poly (ε-caprolactone)/poly (lactic acid) scaffolds via supercritical foaming. Polym Adv Technol 29(12):3065–3074

    Article  Google Scholar 

  113. Shin DY et al (2018) In vitro and in vivo evaluation of polylactic acid-based composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration. J Biomater Appl 32(10):1360–1370

    Article  Google Scholar 

  114. Farzamfar S et al (2019) Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. Int J Polym Mater Polym Biomater 68(8):472–479

    Article  Google Scholar 

  115. Zhao J et al (2012) Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 33(6):1948–1958

    Article  Google Scholar 

  116. Cheng CJ et al (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247

    Article  Google Scholar 

  117. Kamaly N et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    Article  Google Scholar 

  118. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    Article  Google Scholar 

  119. Yu Y et al (2014) Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromol 15(2):524–532

    Article  Google Scholar 

  120. Kluge J, Mazzotti M, Muhrer G (2010) Solubility of Ketoprofen in colloidal PLGA. Int J Pharm 399(1):163–172

    Article  Google Scholar 

  121. Ahmad H et al (2019) PLGA scaffolds: building blocks for new age therapeutics. Materials for Biomedical Engineering. Elsevier, pp 155–201

    Chapter  Google Scholar 

  122. Wang Z et al (2020) Development and in vitro characterization of rifapentine microsphere-loaded bone implants: a sustained drug delivery system. Annals of palliative medicine 9(2):375–387

    Article  MathSciNet  Google Scholar 

  123. Kareem MM et al (2019) Hybrid core–shell scaffolds for bone tissue engineering. Biomed Mater 14(2):025008

    Article  Google Scholar 

  124. Liu R et al (2018) Long-term delivery of rhIGF-1 from biodegradable poly(lactic acid)/hydroxyapatite@Eudragit double-layer microspheres for prevention of bone loss and articular degeneration in C57BL/6 mice. J Mater Chem B 6(19):3085–3095

    Article  Google Scholar 

  125. Ye K et al (2019) Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 534:625–636

    Article  Google Scholar 

  126. Romanova OA et al (2019) Non-woven bilayered biodegradable chitosan-gelatin-polylactide scaffold for bioengineering of tracheal epithelium. Cell prolif 52(3):e12598

    Article  Google Scholar 

  127. Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193

    Article  Google Scholar 

  128. Valantin M-A et al (2003) Polylactic acid implants (New-Fill)® to correct facial lipoatrophy in HIV-infected patients: results of the open-label study VEGA. AIDS 17(17):2471–2477

    Article  Google Scholar 

  129. Oltean-Dan D et al (2019) Enhancement of bone consolidation using high-frequency pulsed electromagnetic short-waves and titanium implants coated with biomimetic composite embedded into PLA matrix: in vivo evaluation. Int J Nanomed 14:5799

    Article  Google Scholar 

  130. Tanodekaew S, Channasanon S, Kaewkong P (2019) Heat-curing polylactide for bone implants: Preparation and investigation on properties relevant to degradation. J Bioact Compat Polym 34(6):464–478

    Article  Google Scholar 

  131. Martin V et al (2019) Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng, C 101:15–26

    Article  Google Scholar 

  132. Ramesh N, Moratti SC, Dias GJ (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater 106(5):2046–2057

    Article  Google Scholar 

  133. Yang C et al (2018) Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 8(2):464

    Article  Google Scholar 

  134. Zahid S et al (2019) Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Mater Sci Eng C 101:438–447

    Article  Google Scholar 

  135. Dwivedi A, Mazumder A, Nasongkla N (2018) Layer-by-layer nanocoating of antibacterial niosome on orthopedic implant. Int J Pharm 547(1–2):235–243

    Article  Google Scholar 

  136. Thomas NG et al (2011) Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction. J Indian Soc Periodontol 15(3):260

    Article  Google Scholar 

  137. Tomlin EM, Nelson SJ, Rossmann JA (2014) Suppl 1: Ridge preservation for implant therapy: A review of the literature. Open Dent J 8:66

    Article  Google Scholar 

  138. Abasian P et al (2019) Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro. Int J Biol Macromol 121:398–406

    Article  Google Scholar 

  139. Mohideen M et al (2017) Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir. Biomaterials 144:144–154

    Article  Google Scholar 

  140. Qin SY, Zhang AQ, Zhang XZ (2018) Recent advances in targeted tumor chemotherapy based on smart nanomedicines. Small 14(45):1802417

    Article  Google Scholar 

  141. Wachtel M, Schäfer BW (2010) Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev 36(4):318–327

    Article  Google Scholar 

  142. Zeng X et al (2017) Polydopamine-based surface modification of copolymeric nanoparticles as a targeted drug delivery system for cancer therapy. J Control Release 259:e150–e151

    Article  Google Scholar 

  143. Wang YR et al (2018) Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo. Biochem Biophys Res Commun 499(1):8–16

    Article  Google Scholar 

  144. Householder KT et al (2015) Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 479(2):374–380

    Article  Google Scholar 

  145. Chen, D.X., Chen, Glaser (2019) Extrusion bioprinting of scaffolds for tissue engineering applications.: Springer.

  146. Qu M et al (2019) Fabrication of superparamagnetic nanofibrous poly(l-lactic acid)/γ-Fe2O3 microspheres for cell carriers. J Biomed Mater Res B Appl Biomater 107(3):511–520

    Article  Google Scholar 

  147. Zhu D et al (2016) Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–154

    Article  Google Scholar 

  148. Jelonek K et al (2019) Dual-targeted biodegradable micelles for anticancer drug delivery. Mater Lett 241:187–189

    Article  Google Scholar 

  149. Li W et al (2018) Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery. Mater Sci Eng C 91:688–695

    Article  Google Scholar 

  150. Jain DS et al (2013) Poly lactic acid (PLA) nanoparticles sustain the cytotoxic action of temozolomide in C6 Glioma cells. Biomed Aging Pathol 3(4):201–208

    Article  Google Scholar 

  151. Zhong Y et al (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromol 15(6):1955–1969

    Article  Google Scholar 

  152. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16

    Article  Google Scholar 

  153. Sim T et al (2018) Development of a docetaxel micellar formulation using poly (ethylene glycol)–polylactide–poly (ethylene glycol)(PEG–PLA–PEG) with successful reconstitution for tumor targeted drug delivery. Drug Delivery 25(1):1362–1371

    Article  Google Scholar 

  154. Michaelis M et al (2000) Bovine seminal ribonuclease attached to nanoparticles made of polylactic acid kills leukemia and lymphoma cell lines in vitro. Anticancer Drugs 11(5):369–376

    Article  Google Scholar 

  155. Lv G et al (2008) Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 24(5):2151–2156

    Article  Google Scholar 

  156. Li J et al (2018) Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci 109(6):1958–1969

    Article  Google Scholar 

  157. Ramachandran R et al (2017) Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep 7(1):1–16

    Article  Google Scholar 

  158. Liu S et al (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos B Eng 136:197–214

    Article  Google Scholar 

  159. Buzarovska A et al (2018) Porous poly (L-lactic acid) nanocomposite scaffolds with functionalized TiO 2 nanoparticles: Properties, cytocompatibility and drug release capability. J Mater Sci 53(16):11151–11166

    Article  Google Scholar 

  160. Wilberforce SI et al (2011) A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites. Acta Biomater 7(5):2176–2184

    Article  Google Scholar 

  161. Kim S-S et al (2006) Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409

    Article  Google Scholar 

  162. Mantsos T et al (2009) Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly (D, L-lactic acid) coatings. Biomed Mater 4(5):055002

    Article  Google Scholar 

  163. Armentano I et al (2011) Novel poly (L-lactide) PLLA/SWNTs nanocomposites for biomedical applications: material characterization and biocompatibility evaluation. J Biomater Sci Polym Ed 22(4–6):541–556

    Article  Google Scholar 

  164. Sun J et al (2018) Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers 10(5):505

    Article  Google Scholar 

  165. Musto P et al (2019) Morphology, molecular interactions and H2O diffusion in a poly (lactic-acid)/graphene composite: A vibrational spectroscopy study. Spectrochim Acta Part A Mol Biomol Spectrosc 218:40–50

    Article  Google Scholar 

  166. Liu S et al (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. RSC Adv 4(36):18652–18659

    Article  Google Scholar 

  167. Liu S et al (2014) Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos Sci Technol 90:40–47

    Article  Google Scholar 

  168. Liu S et al (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A Appl Sci Manuf 89:26–32

    Article  Google Scholar 

  169. Zhou Y, Jing X, Chen Y (2017) Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. J Mater Chem B 5(32):6451–6470

    Article  Google Scholar 

  170. Malladi L, Mahapatro A, Gomes AS (2018) Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Mater Technol 33(2):173–182

    Article  Google Scholar 

  171. Hu H et al (2018) Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly (lactic-co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Appl Mater Interfaces 10(27):22939–22950

    Article  Google Scholar 

  172. Dai X et al (2018) Zeolitic imidazole framework/graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: a promising environmentally friendly water treatment material. ACS Omega 3(6):6860–6866

    Article  Google Scholar 

  173. Ma S et al (2019) Enhanced osteoinduction of electrospun scaffolds with assemblies of hematite nanoparticles as a bioactive interface. Int J Nanomed 14:1051

    Article  Google Scholar 

  174. Arora B, Bhatia R, Attri P (2018) Bionanocomposites: green materials for a sustainable future. New Polymer Nanocomposites for Environmental Remediation. Elsevier, pp 699–712

    Google Scholar 

  175. Mousa HM et al (2018) A multifunctional zinc oxide/poly (lactic acid) nanocomposite layer coated on magnesium alloys for controlled degradation and antibacterial function. ACS Biomater Sci Eng 4(6):2169–2180

    Article  Google Scholar 

  176. Kim JF et al (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE J 62(2):461–490

    Article  MathSciNet  Google Scholar 

  177. George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45

    Article  Google Scholar 

  178. Borkotoky SS, Dhar P, Katiyar V (2018) Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446

    Article  Google Scholar 

  179. Zhou L et al (2018) Enhancing mechanical properties of poly (lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind Crops Prod 112:449–459

    Article  Google Scholar 

  180. Iqbal N et al (2019) Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. Int Mater Rev 64(2):91–126

    Article  Google Scholar 

  181. Yin Y et al (2018) Cellulose nanocrystals modified with a triazine derivative and their reinforcement of poly (lactic acid)-based bionanocomposites. Cellulose 25(5):2965–2976

    Article  MathSciNet  Google Scholar 

  182. Mao D et al (2018) Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr Polym 180:104–111

    Article  Google Scholar 

  183. Jash A, Lim L-T (2018) Triggered release of hexanal from an imidazolidine precursor encapsulated in poly (lactic acid) and ethylcellulose carriers. J Mater Sci 53(3):2221–2235

    Article  Google Scholar 

  184. Robles E et al (2018) Assessment of physical properties of self-bonded composites made of cellulose nanofibrils and poly (lactic acid) microfibrils. Cellulose 25(6):3393–3405

    Article  Google Scholar 

  185. Shojaeiarani J et al (2019) Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites. Compos B Eng 161:483–489

    Article  Google Scholar 

  186. Mane S (2016) Effect of porogens (type and amount) on polymer porosity: a review. Can Chem Trans 4(2):210–225

    MathSciNet  Google Scholar 

  187. Wang Z et al (2019) Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. Int J Biol Macromol 129:878–886

    Article  Google Scholar 

  188. Yin X et al (2018) Simultaneous enhancement of toughness, strength and superhydrophilicity of solvent-free microcrystalline cellulose fluids/poly (lactic acid) fibers fabricated via electrospinning approach. Compos Sci Technol 167:190–198

    Article  Google Scholar 

  189. Li Y et al (2018) Crystallization behaviors of poly (lactic acid) composites fabricated using functionalized eggshell powder and poly (ethylene glycol). Thermochim Acta 663:67–76

    Article  Google Scholar 

  190. Wu X et al (2017) A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. J Mater Chem B 5(17):3084–3102

    Article  Google Scholar 

  191. Sayyar S, Officer DL, Wallace GG (2017) Fabrication of 3D structures from graphene-based biocomposites. J Mater Chem B 5(19):3462–3482

    Article  Google Scholar 

  192. Türk M, Deliormanlı AM (2018) Graphene-containing PCL-coated porous 13–93B3 bioactive glass scaffolds for bone regeneration. Mater Res Express 5(4):045406

    Article  Google Scholar 

  193. Thummarungsan N et al (2018) Influence of graphene on electromechanical responses of plasticized poly (lactic acid). Polymer 138:169–179

    Article  Google Scholar 

  194. Wu D et al (2018) Nano-graphene oxide functionalized bioactive poly (lactic acid) and poly (ε-caprolactone) nanofibrous scaffolds. Materials 11(4):566

    Article  Google Scholar 

  195. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534

    Article  Google Scholar 

  196. Cairncross, R.A., et al. (2006) Moisture sorption, transport, and hydrolytic degradation in polylactide. in Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. Springer.

  197. MadhavanNampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  Google Scholar 

  198. Singh R et al (2003) Biodegradation of poly (ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohyd Res 338(17):1759–1769

    Article  Google Scholar 

  199. Bioplastics, E., European bioplastics. https://docs.european-bioplastics.org/publications/EUBP_Bioplastics_market_data_report_2016.pdf, 2017.

  200. Lopes MS, Jardini AL, Filho RM (2012) Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Engineering 42:1402–1413

    Article  Google Scholar 

  201. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626

    Article  Google Scholar 

  202. Zaini, N.A.M. et al. (2019) Purification and polymerisation of microbial d-lactic acid from DDGS hydrolysates fermentation. Biochemical Engineering Journal, 150: p. 107265.

  203. Singh SK, Anthony P, Chowdhury A (2018) High molecular weight poly (lactic acid) synthesized with apposite catalytic combination and longer time. Orient J Chem 34(4):1984

    Article  Google Scholar 

  204. Zhao Y et al (2004) Direct synthesis of poly (D, L-lactic acid) by melt polycondensation and its application in drug delivery. J Appl Polym Sci 91(4):2143–2150

    Article  Google Scholar 

  205. Yadav N, Nain L, Khare SK (2021) Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization: A step towards curing the environmental plastic issue. Environ Technol Innov 24:101845

    Article  Google Scholar 

  206. Jamshidian M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  Google Scholar 

  207. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  Google Scholar 

  208. Rajak DK et al (2019) Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 11(10):1667

    Article  Google Scholar 

  209. Obuchi S., S. Ogawa (2010) Packaging and other commercial applications. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications, p. 457–467.

  210. Rajeshkumar G. et al. (2021) Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, p. 127483.

Download references

Acknowledgements

Khalifa University of Science and Technology, Abu Dhabi, UAE, supported this work [grant no CIRA-2018-27].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashfaq Ahmad or Fawzi Banat.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial or personal affiliations that could have influenced this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Banat, F., Alsafar, H. et al. An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conv. Bioref. 14, 3057–3076 (2024). https://doi.org/10.1007/s13399-022-02581-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02581-3

Keywords

Navigation