Skip to main content
Log in

Soil Arbuscular Mycorrhizal Fungal Communities Differentially Affect Growth and Nutrient Uptake by Grapevine Rootstocks

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) deliver potentially significant services in sustainable agricultural ecosystems, yet we still lack evidence showing how AMF abundance and/or community composition can benefit crops. In this study, we manipulated AMF communities in grapevine rootstock and measured plant growth and physiological responses. Glasshouse experiments were set up to determine the interaction between rootstock variety and different AMF communities, using AMF communities originating under their own (i.e., “home”) soil and other rootstocks’ (i.e., “away”) soil. The results revealed that specific AMF communities had differential effects on grapevine rootstock growth and nutrient uptake. It was demonstrated that a rootstock generally performed better in the presence of its own AMF community. This study also showed that AMF spore diversity and the relative abundance of certain species is an important factor as, when present in equal abundance, competition between species was indicated to occur, resulting in a reduction in the positive growth outcomes. Moreover, there was a significant difference between the communities with some AMF communities increasing plant growth and nutrient uptake compared with others. The outcomes also demonstrated that some AMF communities indirectly influenced the chlorophyll content in grapevine leaves through the increase of specific nutrients such as K, Mn, and Zn. The findings also indicated that some AMF species may deliver particular benefits to grapevine plants. This work has provided an improved understanding of community level AMF-grapevine interaction and delivered an increased knowledge of the ecosystem services they provide which will benefit the wine growers and the viticulture industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220:1092–1107

    Article  PubMed  Google Scholar 

  2. Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham. pp 1–7

  5. Mitra D, Navendra U, Panneerselvam U, Ansuman S, Ganeshamurthy AN, Divya J (2019) Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int J Life Sci 1:1–10

    Google Scholar 

  6. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhizae interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  7. Al-Hmoud G, Al-Momany A (2017) Effect of four mycorrhizal products on squash plant growth and its effect on physiological plant elements. Adv Crop Sci Technol 5:260

    Google Scholar 

  8. Smith SE, Read D (2008) The symbionts forming arbuscular mycorrhizas. In: Mycorrhizal Symbiosis. 3rd Edition, Academic Press, New York, 787 p

  9. Schubert A, Cravero MC (1985) Occurrence and infectivity of vesicular-arbuscular mycorrhizal fungi in north-western Italy vineyards. Vitis 24:129–138

    Google Scholar 

  10. Karagiannidis N, Nikolaou N (1999) Arbuscular mycorrhizal root infection as an important factor of grapevine nutrition status Multivariate analysis application for evaluation and characterization of the soil and leaf parameters. Agrochimica 43:151–165

    CAS  Google Scholar 

  11. Menge J, Raski D, Lider L, Johnson E, Jones N, Kissler J, Hemstreet C (1983) Interactions between mycorrhizal fungi, soil fumigation, and growth of grapes in California. Am J Enol Vitic 34:117–121

    Article  Google Scholar 

  12. Linderman RG, Davis AE (2001) Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Am J Enol Vitic 52:8–11

    Article  CAS  Google Scholar 

  13. Karagiannidis N, Nikolaou N, Ipsilantis I, Zioziou E (2007) Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza 18:43–50

    Article  CAS  PubMed  Google Scholar 

  14. Mortimer PE, Archer E, Valentine AJ (2004) Mycorrhizal C costs and nutritional benefits in developing grapevines. Mycorrhiza 15:159–165

    Article  PubMed  Google Scholar 

  15. Biricolti S, Ferrini F, Rinaldelli E, Tamantini I, Vignozzi N (1997) VAM fungi and soil lime content influence rootstock growth and nutrient content. Am J Enol Vitic 48:93–99

    Article  Google Scholar 

  16. Petgen M, Schropp A, George E, Römheld V (1998) Einfluss unterschieblicher Inokulationstiefen mit dem arbuskulèaren Mykorrhizapiltz Glomus mosseae auf die Mykorrhizierung bei Reben (Vitis sp.) in Wurzelbeobachtungskäten. Vitis 37:99–105

    Google Scholar 

  17. Schreiner RP, Tarara JM, Smithyman RP (2007) Deficit irrigation promotes arbuscular colonization of fine roots by mycorrhizal fungi in grapevines (Vitis vinifera L.) in an arid climate. Mycorrhiza 17:551–562

    Article  PubMed  Google Scholar 

  18. Schreiner RP (2005) Mycorrhizas and mineral acquisition in grapevines. Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium, 49–60

  19. Ridgway HJ, Kandula J, Stewart A (2006) Optimising the medium for producing arbuscular mycorrhizal spores and the effect of inoculation on grapevine growth. N Z Plant Prot 59:338–342

    Google Scholar 

  20. Cangahuala-Inocente GC, Silva MF, Johnson JM, Manga A, van Tuinen D, Henry C, Lovato JM, Dumas-Gaudot E (2011) Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. Mycorrhiza 21:473–493

    Article  CAS  PubMed  Google Scholar 

  21. Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  22. Sharma D, Kapoor R, Bhatnagar AK (2009) Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. Eur J Soil Biol 45:328–333

    Article  Google Scholar 

  23. Gogoi P, Singh RK (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian J Sci Technol 4:119–125

    Article  Google Scholar 

  24. Krishna H, Singh SK, Sharma RR, Khawale RN (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hortic Amsterdam 106:554–567

    Article  CAS  Google Scholar 

  25. Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611

    Article  PubMed  Google Scholar 

  26. Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  27. Holland TC, Bowen P, Bogdanoff C, Hart MM (2013) How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils 50:667–674

    Article  Google Scholar 

  28. Trouvelot S, Bonneau L, Redecker D, van Tuinen D, Adrian M, Wipf D (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron Sustain Dev 35:1449–1467

    Article  Google Scholar 

  29. Moukarzel R, Ridgway HJ, Gurein-Laguette A, Jones EE (2021) Grapevine rootstocks drive the community structure of arbuscular mycorrhizal fungi in New Zealand vineyards. J Appl Microbiol 131:2941–2956

    Article  CAS  PubMed  Google Scholar 

  30. Daniels BA, Skipper HA (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research, American Phytopathological Society, St. Paul, Minn. pp 29–35

  31. Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. J Oceanograph Soci Japan 46:190–194

    Article  CAS  Google Scholar 

  32. Moukarzel R, Ridgway HJ, Gurein-Laguette A, Jones EE (2020) Development of an improved clearing and staining protocol for woody roots to enable evaluation of Arbuscular mycorrhizal colonisation. N Z Plant Prot 73:33–39

    CAS  Google Scholar 

  33. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  34. Nogales A, Santos ES, Abreu MM, Arán D, Victorino G, Pereira HS, Lopes CM, Viegas W (2019) Mycorrhizal inoculation differentially affects grapevine’s performance in copper contaminated and non-contaminated soils. Front Plant Sci 9:1906

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ozdemir G, Akpinar C, Sabir A, Bilir H, Tangolar S, Ortas I (2010) Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). Eur J Hortic Sci 75:103–110

    Google Scholar 

  36. Bleach C, Cope R, Jones E, Ridgway H, Jaspers M (2008) Impact of mycorrhizal colonisation on grapevine establishment in Cylindrocarpon infested soil. N Z Plant Prot 61:311–316

    Google Scholar 

  37. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  38. Engelmoer DJP, Behm JE, Kiers ET (2014) Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 23:1584–1593

    Article  CAS  PubMed  Google Scholar 

  39. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  40. Bi Y, Zhang J, Song Z, Wang Z, Qiu L, Hu J, Gong Y (2018) Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures. Sci Total Environ 652:398–405

    Article  CAS  PubMed  Google Scholar 

  41. Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611–625

    Article  CAS  PubMed  Google Scholar 

  42. Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  43. Giovannini L, Palla M, Agnolucci M, Avio L, Sbrana C, Turrini A, Giovannetti M (2020) Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. Agronomy 10:106

    Article  Google Scholar 

  44. Nicolás E, Maestre-Valero JF, Alarcón JJ, Pedrero F, Vicente-Sánchez J, Bernabé A, Gómez-Montiel J, Hernández JA, Fernández F (2014) Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. J Agric Sci 153:1084–1096

    Article  Google Scholar 

  45. Balliu A, Sallaku G, Rewald B (2015) AMF Inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981

    Article  CAS  Google Scholar 

  46. Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  PubMed  Google Scholar 

  47. Koch AM, Croll D, Sanders IR (2005) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110

    Article  Google Scholar 

  48. Khalil HA (2013) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress. Asian J Crop Sci 5:393–404

    Article  Google Scholar 

  49. Nikolaou N, Karagiannidis N, Koundouras S, Fysarakis I (2002) Effects of different P sources in soil on increasing growth and mineral uptake of mycorrhizal Vitis vinifera L. (cv. Victoria) vines. J Inter Sci Vigne Vin 36:195–204

    CAS  Google Scholar 

  50. Lambert JJ, Anderson MM, Wolpert JA (2008) Vineyard nutrient needs vary with rootstocks and soils. California Agriculture, Sacramento 62:202–207

    Article  Google Scholar 

  51. Koblet W, Carmo Candolfi-Vasconcelos M, Keller M (1996) Effects of training system, canopy management practices, crop load and rootstock on grapevine photosynthesis. Acta Hortic 427:133–140

    Article  Google Scholar 

  52. Brancadoro LL, Valenti AR, Scienza A (1994) Potassium content of grapevine during the vegetative period: the role of the rootstock. J Plant Nutr 17:2165–2175

    Article  CAS  Google Scholar 

  53. Liu Y, Feng X, Gao P, Li Y, Christensen MJ, Duan T (2018) Arbuscular mycorrhiza fungi increased the susceptibility of Astragalus adsurgens to powdery mildew caused by Erysiphe pisi. Mycology 9:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhizae improve photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58:186–191

    Article  CAS  Google Scholar 

  55. Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  56. Eftekhari M, Alizadeh M, Mashayekhi K, Kambar B (2010) Integration of arbuscular mycorrhizal fungi to grape vine (Vitis Vinifera L.) in nursery stage. J Adv Lab Res 1(2)

  57. Borkowska B (2002) Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol Plant 24:365–370

    Article  Google Scholar 

  58. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  59. Maillard A, Diquélou S, Billard V, Lainé P, Garnica M, Prudent M, Garcia-Maria JM, Yvin JC, Ourry A (2015) Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Sci 6:317

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bloom AJ, Lancaster KM (2018) Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. Nat Plant 4:414–422

    Article  CAS  Google Scholar 

  61. Alejandro S, Holler S, Meier B, Peiter E (2020) Manganese in plants: from acquisition to subcellular allocation. Front Plant Sci 11:300

    Article  PubMed  PubMed Central  Google Scholar 

  62. Samreen T, Shah HU, Ullah S, Javid M (2017) Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arab J Chem 10:1802–1807

    Article  Google Scholar 

  63. Francois LE, Goodin JR (1972) Interaction of temperature and salinity on sugar beet germination. Agron J 64:272

    Article  Google Scholar 

  64. Bica D, Gay G, Morando A, Soave E, Bravdo BA (2000) Effect of rootstock and Vitis vinifera genotype on photosynthetic parameters. Acta Hort 526:373–379

    Article  Google Scholar 

  65. Somkuwar RG, Taware PB, Bhange MA, Sharma J, Khan I (2015) Influence of different rootstocks on growth, photosynthesis, biochemical composition, and nutrient contents in “fantasy seedless” grapes. Int J Fruit Sci 15:251–266

    Article  Google Scholar 

  66. Keller M, Kumme M, Carmo Vasconcelos M (2001) Soil nitrogen utilization for growth and gas exchange by grapevines in response to nitrogen supply and rootstock. Aust J Grape Wine Res 7:2–11

    Article  CAS  Google Scholar 

  67. Ulas A, Behrens T, Wiesler F, Horst WJ, Schulte auf’m Erley G, (2013) Does genotypic variation in nitrogen remobilisation efficiency contribute to nitrogen efficiency of winter oilseed-rape cultivars (Brassica napus L.)? Plant Soil 371:463–471

    Article  CAS  Google Scholar 

  68. Gargın S (2011) Bağcılıkta kullanılan farklı amerikan asma anaçlarının yaprak klorofil yoğunluklarının (SPAD) belirlenmesi. Uluslararası Katılımlı 1. Ali Numan Kıraç Tarım Kongresi ve Fuarı. 27–30

Download references

Acknowledgements

The authors acknowledge the help of Rowan Sprague, Sandy Hammond, and Myles Mackintosh, Lincoln University, with the experimental setup and harvesting process. The authors are also grateful to the Lincoln University Nursery staff for maintaining the pot experiments.

Funding

This work was funded by The New Zealand Institute of Plant and Food Research Ltd. (Strategic Science Investment Fund, Project P/471778/08) and Lincoln University, New Zealand.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Eirian Jones, Hayley Ridgway; methodology: Romy Moukarzel, Natalia Cripps-Guazzone; formal analysis and investigation: Romy Moukarzel and Lauren Waller; writing—original draft preparation: Romy Moukarzel; writing—review and editing: Eirian Jones, Hayley Ridgway, Alexis Guerin-Laguette, Lauren Waller, Natalia Cripps-Guazzone; supervision: Eirian Jones, Hayley Ridgway, Alexis Guerin-Laguette.

Corresponding author

Correspondence to Romy Moukarzel.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moukarzel, R., Ridgway, H.J., Waller, L. et al. Soil Arbuscular Mycorrhizal Fungal Communities Differentially Affect Growth and Nutrient Uptake by Grapevine Rootstocks. Microb Ecol 86, 1035–1049 (2023). https://doi.org/10.1007/s00248-022-02160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02160-z

Keywords

Navigation